首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tactile exchanges involving the pectoral fin have been documented in a variety of dolphin species. Several functions (e.g., social, hygienic) have been offered as possible explanations for when and why dolphins exchange pectoral fin contacts. In this study, we compared pectoral fin contact between dolphin dyads from three distinct dolphin populations: two groups of wild dolphins; Atlantic spotted dolphins (Stenella frontalis) from The Bahamas and Indo-Pacific bottlenose dolphins (Tursiops aduncus) from around Mikura Island, Japan; and one group of captive bottlenose dolphins (Tursiops truncatus) residing at the Roatan Institute for Marine Sciences, Anthony's Key Resort. A number of similarities were observed between the captive and wild groups, including; rates of pectoral fin contact, which dolphin initiated contact, posture preference, and same-sex rubbing partner preference. Unlike their wild counterparts, however, dolphins in the captive study group engaged in petting and rubbing at equal rates, females were more likely to contact males, males assumed the various rubbing roles more frequently than females, and calves and juveniles were more likely to be involved in pectoral fin contact exchanges. These results suggest that some aspects of pectoral fin contact behaviour might be common to many dolphin species, whereas other aspects could be species specific, or could be the result of differing environmental and social conditions.  相似文献   

2.
Population substructure has important implications for a species' ecology and evolution. As such, knowledge of this structuring is critical for the conservation and management of natural populations. Among marine mammals, many examples exist of species that enjoy a broad geographical distribution, yet are characterized by fine‐scale population subdivisions. Coastal bottlenose dolphins have been studied extensively in a few regions globally, and these studies have highlighted a great diversity in both social strategies and demographic isolation. Here we use molecular genetic markers to examine the degree of population subdivision among three study sites separated by less than 250 km on Little Bahama Bank in the northern Bahamas. Mitochondrial DNA (mtDNA) sequence variation and microsatellite genotypes were used to assess partitioning of genetic variance among 56 individually recognized coastal ecotype bottlenose dolphins. Although resolved levels of genetic differentiation suggest gene flow among the three study sites, both nuclear and mitochondrial data indicate a significant degree of subdivision within the Little Bahama Bank population, and sex‐based analyses suggest that patterns of dispersal may not be strictly biased toward males. These results corroborate the site fidelity documented through long‐term photo‐identification studies in the NE Bahamas, and highlight the need to consider independent subpopulation units for the conservation and management of coastal bottlenose dolphins in the Bahamas.  相似文献   

3.
This is the first known report on the skeletal and muscular systems, and the skin histology, of the pectoral fin of the rare planktivorous megamouth shark Megachasma pelagios. The pectoral fin is characterized by three features: 1) a large number of segments in the radial cartilages; 2) highly elastic pectoral fin skin; and 3) a vertically-rotated hinge joint at the pectoral fin base. These features suggest that the pectoral fin of the megamouth shark is remarkably flexible and mobile, and that this flexibility and mobility enhance dynamic lift control, thus allowing for stable swimming at slow speeds. The flexibility and mobility of the megamouth shark pectoral fin contrasts with that of fast-swimming sharks, such as Isurus oxyrhinchus and Lamna ditropis, in which the pectoral fin is stiff and relatively immobile.  相似文献   

4.
The dermal layers of several elasmobranch species have been shown to be sexually dimorphic. Generally, when this occurs the females have thicker dermal layers compared to those of males. This sexual dimorphism has been suggested to occur as a response to male biting during mating. Although male biting as a copulatory behaviour in Scyliorhinus canicula has been widely speculated to occur, only relatively recently has this behaviour been observed. Male S. canicula use their mouths to bite the female’s pectoral and caudal fins as part of their pre-copulatory behaviour and to grasp females during copulation. Previous work has shown that female S. canicula have a thicker epidermis compared to that of males. The structure of the dermal denticles in females may also differ from that of males in order to protect against male biting or to provide a greater degree of friction in order to allow the male more purchase. This study reveals that the length, width and density of the dermal denticles of mature male and female S. canicula are sexually dimorphic across the integument in areas where males have been observed to bite and wrap themselves around females (pectoral fin, area posterior to the pectoral fin, caudal fin, and pelvic girdle). No significant differences in the dermal denticle dimensions were found in other body areas examined (head, dorsal skin and caudal peduncle). Sexually dimorphic dermal denticles in mature S. canicula could be a response to male biting/wrapping as part of the copulatory process.  相似文献   

5.
We quantitatively analysed synchronous breathing for dyads in Indo-Pacific bottlenose dolphins at Mikura Island, Tokyo, Japan. For most cases, we observed dyads swimming in the same direction (97%), in close proximity (i.e., less than 1.5 m) and with their body axes parallel as they breathed synchronously. Moreover, the pairs engaged in identical behaviour before and after the synchronous breathing episodes. These results suggest that the dolphins synchronize their movements, and that synchronous breathing is a component of “pair-swimming”, an affiliative social behaviour. Same sex pairs of the same age class frequently engaged in synchronous breathing for adults and subadults, as well as mother-calf and escort-calf pairs. The distance between individuals during synchronous breathing for mother-calf pairs was less than for other pairs. The distance observed between individuals for female pairs was less than for male pairs. The time differences between each exhale for each of the two dolphins involved in synchronous breathing episodes for female pairs were smaller than for male pairs, and time differences for adult pairs were smaller than subadult pairs. These results suggest that age and sex class influenced the characteristics of this behaviour.  相似文献   

6.
"Flipper rubbing" behavior was quantitatively analyzed in wild Indo-Pacific bottlenose dolphins ( Tursiops aduncus ) around Mikura Island, Tokyo, Japan. We observed two types of flipper rubbing: (1) F-B rubbing; one dolphin (Rubber) rubbed its flipper over various parts of a partner's (Rubbee) body, and (2) F-F rubbing; both dolphins rubbed each other's anterior flipper edge in alternating shifts. F-B rubbings tended to be initiated by the Rubbee and were terminated by the Rubber. The Rubbee often moved actively its body part that was in contact with the Rubber's flipper, and assumed side-up, upside-down, or other postures while the Rubber remained horizontal in most cases. These facts suggest that the Rubbee engaged in F-B rubbing more actively than the Rubber, and might receive some benefit from the frictional contact during F-B rubbing. Dolphins often switched their roles as Rubber and Rubbee between episodes of flipper rubbing bout. Adults and sub-adults exchanged F-B rubbing and F-F rubbing most often with individuals of the same sex in the same age class. F-B rubbing was frequent in mother-and-calf dyads. Our results suggest that flipper rubbing is an affiliative behavior which could be a quantitative measure of social relationships among individuals of this species in future studies.  相似文献   

7.
WithAcanthodes bourbonensis n.sp. another acanthodian from Lower Permian basins of Europe is described. The new species is similar toAcanthodes gracilis (Beyrich) from Silesia (Poland), but it differs from this and all other species of the genus in the development of the pectoral fins, dorsal fin, anal fin and caudal fin. In pectoral fins, dorsal and anal fin there are different ceratotrichia as supporting elements and pectoral fins are attaching along a row of oblonged large scales. In the caudal fin there is an epichoral appendix first found byHeyler (1969).  相似文献   

8.
The so-calledOryzias melastigma (McClelland, 1839), reported from India, Bangladesh, Myanmar, and Malaysia by numerous authors beginning with Day (1877), is based mainly or entirely onAplocheilus panchax (Hamilton, 1822). India and Bangladesh have two species ofOryzias, both large. The deeper-bodied of these two species is reported for the first time asO. dancena (Hamilton, 1822). The other is identified asO. carnaticus (Jerdon, 1849). Myanmar has one large species,O. dancena, and one tiny species,O. uwai new species.Oryzias minutillus Smith, 1945 andO. uwai differ from all otherOryzias in having 4/5 instead of 5/6 principal caudal fin rays.Oryzias uwai differs fromO. minutillus in being more conspicuously pigmented and having large, 6-rayed pelvic fins often extending to anal fin origin instead of much smaller and shorter 5-rayed pelvic fins. In Thailand (including its part of the Mekong basin) three species are known: a large estuarine species tentatively identified asO. javanicus (Bleeker, 1854) and two tiny inland species,O. mekongensis Magtoon & Uwa, 1986, andO. minutillus. Oryzias minutillus from many localities are more or less melanoproctic, i.e. have a darkly pigmented genital or vent area not seen in other species. The Mekong basin in Laos has two large species,O. latipes (Temminck & Schlegel, 1846) andO. pectoralis new species, distinguished by a prominent black blotch on the pectoral fin base, both recently collected in the Nam Theun watershed in central Laos; and two tiny species,O. mekongensis andO. minutillus. Only one species ofOryzias is known from the Mekong delta in Vietnam, the small moderately deep-bodiedO. haugiangensis new species, with 19–22 anal and 9–10 pectoral fin rays. The Indonesian island of Java has one large species,O. javanicus (Bleeker, 1852) with 21–25 anal and 11 pectoral fin rays, and one small species,O. hubbsi new species, with only 17–21 anal and 9 pectoral fin rays.  相似文献   

9.
Different dolphin and tuna species have frequently been reported to aggregate in areas of high frontal activity, sometimes developing close multi-species associations to increase feeding success. Aerial surveys are a common tool to monitor the density and abundance of marine mammals, and have recently become a focus in the search for methods to provide fisheries-independent abundance indicators for tuna stock assessment. In this study, we present first density estimates corrected for availability bias of fin whales (Balaenoptera physalus) and striped dolphins (Stenella coeruleoalba) from the Golf of Lions (GoL), compared with uncorrected estimates of Atlantic bluefin tuna (ABFT; Thunnus thynnus) densities from 8 years of line transect aerial surveys. The raw sighting data were further used to analyze patterns of spatial co-occurrence and density of these three top marine predators in this important feeding ground in the Northwestern Mediterranean Sea. These patterns were investigated regarding known species-specific feeding preferences and environmental characteristics (i. e. mesoscale activity) of the survey zone. ABFT was by far the most abundant species during the surveys in terms of schools and individuals, followed by striped dolphins and fin whales. However, when accounted for availability bias, schools of dolphins and fin whales were of equal density. Direct interactions of the species appeared to be the exception, but results indicate that densities, presence and core sighting locations of striped dolphins and ABFT were correlated. Core sighting areas of these species were located close to an area of high mesoscale activity (oceanic fronts and eddies). Fin whales did not show such a correlation. The results further highlight the feasibility to coordinate research efforts to explore the behaviour and abundance of the investigated species, as demanded by the Marine Strategy Framework Directive (MSFD).  相似文献   

10.
11.
The organization of tissues in appendages often affects their mechanical properties and function. In the fish family Labridae, swimming behavior is associated with pectoral fin flexural stiffness and morphology, where fins range on a continuum from stiff to relatively flexible fins. Across this diversity, pectoral fin flexural stiffness decreases exponentially along the length of any given fin ray, and ray stiffness decreases along the chord of the fin from the leading to trailing edge. In this study, we examine the morphological properties of fin rays, including the effective modulus in bending (E), second moment of area (I), segmentation, and branching patterns, and their impact on fin ray stiffness. We quantify intrinsic pectoral fin ray stiffness in similarly sized fins of two closely related species that employ fins of divergent mechanics, the flapping Gomphosus varius and the rowing Halichoeres bivittatus. While segmentation patterns and E were similar between species, measurements of I and the number of fin ray branch nodes were greater in G. varius than in H. bivittatus. A multiple regression model found that of these variables, I was always significantly correlated with fin ray flexural stiffness and that variation in I always explained the majority of the variation in flexural stiffness. Thus, while most of the morphological variables quantified in this study correlate with fin ray flexural stiffness, second moment of area is the greatest factor contributing to variation in flexural stiffness. Further, interspecific variation in fin ray branching pattern could be used as a means of tuning the effective stiffness of the fin webbing to differences in swimming behavior and hydrodynamics. The comparison of these results to other systems begins to unveil fundamental morphological features of biological beams and yields insight into the role of mechanical properties in fin deformation for aquatic locomotion.  相似文献   

12.
13.
A new species of blenny,Atrosalarias hosokawai is described on the basis of 15 specimens from the western Pacific. It is distinguished from the only known congeneric species,A. fuscus (=A. fuscus fuscus+A. fuscus holomelas), by the following: supraorbital cirrus broad and flat (vs. slender and thread-like inA. fuscus); dorsal fin broadly contacting caudal fin (vs. narrow contact); anal fin narrowly contacting caudal fin (vs. usually free or (rarely) very narrow contact); posteriormost dorsal and anal fin rays long (vs. short); first or posteriormost soft dorsal fin ray shortest (vs. posteriormost ray shortest); first soft anal fin ray shortest (vs. posteriormost ray shortest); caudal fin rays branched in specimens over 36.0 mm SL (vs. unbranched); a large dark spot on base of pectoral fin absent (vs. present or absent); a red margin on anterior dorsal fin absent (vs. present). Futhermore,A. hosokawai differs fromA. f. fuscus in having a lower number of dorsal fin spines (ten vs. eleven) and geographical distribution (western Pacific Ocean vs. Indian Ocean and Red Sea). AlthoughA. hosokawai occurs sympatrically withA. f. holomelas, it can be further distinguished from the latter in lacking a large dark spot on base of pectoral fin.  相似文献   

14.
A new species of snailfishes, Careproctus iacchus, is described on the basis of three specimens collected from the Seas of Japan and Okhotsk. Among the species of Careproctus, the new species is most similar to Careproctus comus and Careproctus faunus, both known from the Aleutian Islands, in having a variegated body coloration. However, it can be distinguished in having 44–46 dorsal- and 39–40 anal-fin rays (vs. 50–56 and 44–50 in C. comus and 47–51 and 41–45 in C. faunus, respectively), a pectoral fin without a notch (vs. both with a shallow notch), no interradial fenestra between proximal radials two and three in the pectoral girdle (vs. both having a fenestra between proximal radials two and three), a gill slit entirely above the pectoral fin (extending to just above the pectoral fin or to 1–5th ray), a body with many white spots (vs. mottled with red and white), and a large white blotch on cheek (vs. no distinct markings on cheek) when fresh.  相似文献   

15.
An ophichthid eel,Ophichthus megalops sp. nov., is described from the Kumano-nada, off Owase, Mie Prefecture, Japan. This species is characterized by its large eye, dorsal fin origin far behind the tip of pectoral fin, vertebral number, dentition, and a distinct black smudge on the skin sheath of anal fin near the tip of tail.  相似文献   

16.
The highly specialized coronulid barnacle Xenobalanus globicipitis attaches exclusively on cetaceans worldwide, but little is known about the factors that drive the microhabitat patterns on its hosts. We investigate this issue based on data on occurrence, abundance, distribution, orientation, and size of X. globicipitis collected from 242 striped dolphins (Stenella coeruleoalba) that were stranded along the Mediterranean coast of Spain. Barnacles exclusively infested the fins, particularly along the trailing edge. Occurrence, abundance, and density of X. globicipitis were significantly higher, and barnacles were significantly larger, on the caudal fin than on the flippers and dorsal fin. Barnacles were found more frequently and in greater numbers on the dorsal rather than ventral side of the caudal fin and on the central third of dorsal and ventral fluke surfaces. Nearly all examined individuals attached with their cirral fan oriented opposite to the fluke edge. We suggest that X. globicipitis may chemically recognize dolphins as a substratum, but fins, particularly the flukes, are passively selected because of creation of vortices that increase contact of cyprids with skin and early survival of these larvae at the corresponding sites. Cyprids could actively select the trailing edge and orient with the cirri facing the main direction of flow. Attachment on the dorsal side of the flukes is likely associated with asymmetrical oscillation of the caudal fin, and the main presence on the central segment of the flukes could be related to suitable water flow conditions generated by fluke performance for both settlement and nutrient filtration.  相似文献   

17.
From the Autunian of the Saar-Nahe-BasinAcanthodes tholeyi n. sp., a new species of acanthodians is described. Only the holotype (part and counterpart) is known. It differs from the well knownAcanthodes bronni in several characteristics like the anatomy of the pectoral fin, length-/width rate of the pectoral fin spine, length/width of the unpaired ventral spine and the existence of a ventral fin, supported by ceratotrichia.  相似文献   

18.
Hemibrycon iqueima sp. nov., is described from small streams in the Magdalena drainage at the foothills of the western slope of the Eastern Cordillera of the Colombian Andes, Suarez municipality, Tolima Department, Colombia. The new species is distinguished from its congeners in the Magdalena–Cauca River basin by a combination of characters related to snout–anal‐fin origin length, head length, dorsal–pectoral fin distance, dorsal‐fin–hypural distance, postorbital distance, orbital diameter, snout length, number of total vertebrae, pre‐dorsal scales, scale rows between anal‐fin origin and lateral line, number of branched rays of the anal fin, maxillary teeth number and number and arrangement of hooks on the branched rays of the pectoral and dorsal fins. In addition, the validity of this species is supported by previous molecular analyses that included specimens of the new species that had been erroneously identified. Phylogenetic relationships between the new species and congeners from Pacific coast basins are discussed.  相似文献   

19.
20.
Aquatic organisms exposed to high flow regimes typically exhibit adaptations to decrease overall drag and increase friction with the substrate. However, these adaptations have not yet been examined on a structural level. Sculpins (Scorpaeniformes: Cottoidea) have regionalized pectoral fins that are modified for increasing friction with the substrate, and morphological specialization varies across species. We examined body and pectoral fin morphology of 9 species to determine patterns of body and pectoral fin specialization. Intact specimens and pectoral fins were measured, and multivariate techniques determined the differences among species. Cluster analysis identified 4 groups that likely represent differences in station-holding demand, and this was supported by a discriminant function analysis. Primarily, the high-demand group had increased peduncle depth (specialization for acceleration) and larger pectoral fins with less webbed ventral rays (specialization for mechanical gripping) compared to other groups; secondarily, the high-demand group had a greater aspect ratio and a reduced number of pectoral fin rays (specialization for lift generation) than other groups. The function of sculpin pectoral fins likely shifts from primarily gripping where demand is likely low, to an equal dependence on gripping and negative lift generation where demand is likely high. Specialization of the ventral pectoral fin region for gripping likely contributes to the recent diversification of some species into high-demand habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号