首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is remarkable diversity in brain anatomy among vertebrates and evidence is accumulating that predatory interactions are crucially important for this diversity. To test this hypothesis, we collected female guppies (Poecilia reticulata) from 16 wild populations and related their brain anatomy to several aspects of predation pressure in this ecosystem, such as the biomass of the four major predators of guppies (one prawn and three fish species), and predator diversity (number of predatory fish species in each site). We found that populations from localities with higher prawn biomass had relatively larger telencephalon size as well as larger brains. Optic tectum size was positively associated with one of the fish predator’s biomass and with overall predator diversity. However, both olfactory bulb and hypothalamus size were negatively associated with the biomass of another of the fish predators. Hence, while fish predator occurrence is associated with variation in brain anatomy, prawn occurrence is associated with variation in brain size. Our results suggest that cognitive challenges posed by local differences in predator communities may lead to changes in prey brain anatomy in the wild.  相似文献   

2.
Transgenic and wild-type individual coho salmon Oncorhynchus kisutch were reared in hatchery and near-natural stream conditions and their brain and structure sizes were determined. Animals reared in the hatchery grew larger and developed larger brains, both absolutely and when controlling for body size. In both environments, transgenics developed relatively smaller brains than wild types. Further, the volume of the optic tectum of both genotypes was larger in the hatchery animals and the cerebellum of transgenics was smaller when reared in near-natural streams. Finally, wild types developed a markedly smaller telencephalon under hatchery conditions. It is concluded that, apart from the environment, genetic factors that modulate somatic growth rate also have a strong influence on brain size and structure.  相似文献   

3.
There is remarkable diversity in brain size among vertebrates, but surprisingly little is known about how ecological species interactions impact the evolution of brain size. Using guppies, artificially selected for large and small brains, we determined how brain size affects survival under predation threat in a naturalistic environment. We cohoused mixed groups of small‐ and large‐brained individuals in six semi‐natural streams with their natural predator, the pike cichlid, and monitored survival in weekly censuses over 5 months. We found that large‐brained females had 13.5% higher survival compared to small‐brained females, whereas the brain size had no discernible effect on male survival. We suggest that large‐brained females have a cognitive advantage that allows them to better evade predation, whereas large‐brained males are more colourful, which may counteract any potential benefits of brain size. Our study provides the first experimental evidence that trophic interactions can affect the evolution of brain size.  相似文献   

4.
We use an experimental introduction in nature to examine factors that influence parallel evolution. In 1996, 200 high-predation guppies (Poecilia reticulata) from the Yarra River were introduced into the Damier River, which previously lacked guppies. Eight years later, we quantified the colour of wild-caught guppies ('phenotypic' divergence) and lab-reared guppies ('genetic' divergence) from low- and high-predation environments in both rivers. Phenotypic and genetic divergence between predation environments within the Yarra was evident for black and for orange. Phenotypic divergence within the Damier was parallel to the Yarra for black but not for orange. Genetic divergence was absent between predation environments within the Damier, but was evident when comparing both Damier populations to their Yarra ancestors. The evolution of male colour thus depends on factors other than the simple contrast between 'high' and 'low' predation. We suggest that the parallel evolution of male signalling traits may sometimes first require the parallel evolution of female preferences.  相似文献   

5.
Population differences in the schooling behaviour of adult guppies (Poecilia reticulata) from Trinidad have previously been well documented. This paper demonstrates that variation in schooling behaviour is also present in newborn fish. Guppies from the Aripo River of Trinidad display well-developed schooling behaviour from birth. In addition to forming cohesive and polarized groups, these newborn fish also exhibit predator inspection behaviour. Newborn guppies from the Paria River perform inspections but, unlike the Aripo fish, are poor schoolers. Population variation in behaviour at birth does not necessarily reflect the pattern observed in the adult fish. As adults, guppies from the Upper section of the Aripo River have a much lower schooling tendency and are less wary during inspection than the downstream Lower Aripo guppies. At birth, however, the schooling behaviour and inspection behaviour in the two populations is identical. These results suggest that different selective pressures operate on adult and newborn guppies in Trinidad.  相似文献   

6.
The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large‐ and small‐brained animals and only minor sex‐specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions.  相似文献   

7.
In this study, we contrast brain morphology from hatchery and wild reared stocks to examine the hypothesis that in salmonid fishes, captive rearing produces changes in brain development. Using rainbow trout, Oncorhynchus mykiss, as a model, we measured eight regions of the salmonid brain to examine differences between wild and hatchery reared fish. We find using multiple analysis of covariance (MANCOVA), analysis of covariance (ANCOVA) and discriminant function analysis (DFA) that the brains of hatchery reared fish are relatively smaller in several critical measures than their wild counterparts. Our work may suggest a mechanistic basis for the observed vulnerability of hatchery fish to predation and their general low survival upon release into the wild. Our results are the first to highlight the effects of hatchery rearing on changes in brain development inbreak fishes.  相似文献   

8.
Neurons are the basic computational units of the brain, but brain size is the predominant surrogate measure of brain functional capacity in comparative and cognitive neuroscience. This approach is based on the assumption that larger brains harbor higher numbers of neurons and their connections, and therefore have a higher information‐processing capacity. However, recent studies have shown that brain mass may be less strongly correlated with neuron counts than previously thought. Till now, no experimental test has been conducted to examine the relationship between evolutionary changes in brain size and the number of brain neurons. Here, we provide such a test by comparing neuron number in artificial selection lines of female guppies (Poecilia reticulata) with >15% difference in relative brain mass and numerous previously demonstrated cognitive differences. Using the isotropic fractionator, we demonstrate that large‐brained females have a higher overall number of neurons than small‐brained females, but similar neuronal densities. Importantly, this difference holds also for the telencephalon, a key region for cognition. Our study provides the first direct experimental evidence that selection for brain mass leads to matching changes in number of neurons and shows that brain size evolution is intimately linked to the evolution of neuron number and cognition.  相似文献   

9.
Female Size Influences Mate Preferences of Male Guppies   总被引:6,自引:1,他引:5  
Guppies (Poecilia reticulata) have a promiscuous mating system in which female choice for brightly coloured males plays an important role. Consequently, much research on guppies has examined how mate choice by females has lead to the evolution of male colour patterns. Much less attention has been devoted to mate choice by males in this species. In this study, we show that male guppies are choosy when selecting a female to associate with, significantly preferring the larger female when presented with two females that differed by ≥2 mm in standard length (SL). The strength of their preference for each female increased with absolute female size. The relative sizes of the females, however, also influenced male mating preferences: males showed stronger preferences for the larger female as the difference in SL between the two females increased. Such a preference for larger females is not unexpected as fecundity generally increases with body size in female fish. Thus, males choosing to mate with the larger female should have higher reproductive success. An apparent, but non‐significant anomaly, whereby males appear to prefer the smaller of the two females when the difference between female SL was <4 mm, deserves further investigation.  相似文献   

10.
In Trinidad, guppies (Poecilia reticulata) in high‐predation localities show more cohesive shoaling behaviour than those living with less dangerous predators in low‐predation sites. We evaluated the relative contributions of population origin (i.e. genetic and/or maternal effects) and social environment on the expression of shoaling by assessing the behaviour of juveniles reared in a range of social conditions. Focal individuals, offspring of guppies from populations from high‐ or low‐predation localities, were reared in a multifactorial experiment; we created four different social conditions by manipulating the source and demography of the conspecific residents with whom focal individuals interacted. We found that high‐predation fish displayed a stronger propensity to shoal than low‐predation ones. Our results also suggest a role for interactions between the source of the focal individuals, the demography of the group in which they were reared and the origin of the guppies with whom they were reared. Depending on their origin (high‐ vs. low‐ predation) and rearing density, our focal fish were more likely to shoal if they were reared with high‐predation residents. Learning from high‐predation residents, aggressive interactions with low‐predation residents and/or phenotype matching could have played a role in driving this effect of social environment. This effect of the phenotype of conspecifics on shoaling development would enhance heritable differences in shoaling propensity such that both could contribute to the well‐documented difference in shoaling behaviour of high‐ and low‐predation guppies in natural populations.  相似文献   

11.
Prior research has demonstrated a strong association between the species of predators that co-occur with guppies and the evolution of guppy life histories. The evolution of these differences in life histories has been attributed to the higher mortality rates experienced by guppies in high-predation environments. Here, we evaluate whether there might be indirect effects of predation on the evolution of life-history patterns and whether there are environmental differences that are correlated with predation. To do so, we quantified features of the physical and chemical environment and the population biology of guppies from seven high- and low-predation localities. We found that high-predation environments tend to be larger streams with higher light levels and higher primary productivity, which should enhance food availability for guppies. We also found that guppy populations from high-predation environments have many more small individuals and fewer large individuals than those from low-predation environments, which is caused by their higher birth rates and death rates. Because of these differences in size distribution, guppies from high-predation environments have only one-fourth of the biomass per unit area, which should also enhance food availability for guppies in these localities. Guppies from high-predation sites allocate more resources to reproduction, grow faster, and attain larger asymptotic sizes, all of which are consistent with higher levels of resource availability. We conclude that guppies from high-predation environments experience higher levels of resource availability in part because of correlated differences in the environment (light levels, primary productivity) and in part as an indirect consequence of predation (death rates and biomass density). These differences in resource availability can, in turn, augment the effect of predator-induced mortality as factors that shape the evolution of guppy life-history patterns. We found no differences in the invertebrate communities from high- and low-predation localities, so we conclude that there do not appear to be multitrophic, indirect effects associated with these differences in predation.  相似文献   

12.
Predators are widely assumed to create selection that shapes the evolution of prey escape abilities. However, this assumption is difficult to test directly due to the challenge of recording both predation and its evolutionary consequences in the wild. We examined these events by studying natural and experimental populations of Trinidadian guppies, Poecilia reticulata, which occur in distinct high-predation and low-predation environments within streams. Importantly, in the last two decades several populations of guppies have been experimentally introduced from one type of predatory environment into the other, allowing measurements of the consequences of change. We used this system to test two hypotheses: First, that changes in predatory environments create phenotypic selection favoring changes in escape ability of guppies, and second, that this selection can result in rapid evolution. For the first test we compared escape ability of wild caught guppies from high- versus low-predation environments by measuring survival rates during staged encounters with a major predator, the pike cichlid Crenicichla alta. We used guppies from three streams, comparing two within-stream pairs of natural populations and three within-stream pairs of an introduced population versus its natural source population. In every comparison, guppies from the high-predation population showed higher survival. These multiple, parallel divergences in guppy survival phenotype suggest that predatory environment does create selection of escape ability. We tested our second hypothesis by rearing guppies in common garden conditions in the laboratory, then repeating the earlier experiments using the F2 generation. As before, each comparison resulted in higher survival of guppies descended from the high-predation populations, demonstrating that population differences in escape ability have a genetic basis. These results also show that escape ability can evolve very rapidly in nature, that is, within 26-36 generations in the introduced populations. Interestingly, we found rapid evolutionary loss of escape ability in populations introduced into low-predation environments, suggesting that steep fitness trade-offs may influence the evolution of escape traits.  相似文献   

13.
Brain size varies substantially across the animal kingdom and is often associated with cognitive ability; however, the genetic architecture underpinning natural variation in these key traits is virtually unknown. In order to identify the genetic architecture and loci underlying variation in brain size, we analysed both coding sequence and expression for all the loci expressed in the telencephalon in replicate populations of guppies (Poecilia reticulata) artificially selected for large and small relative brain size. A single gene, Angiopoietin-1 (Ang-1), a regulator of angiogenesis and suspected driver of neural development, was differentially expressed between large- and small-brain populations. Zebra fish (Danio rerio) morphants showed that mild knock down of Ang-1 produces a small-brained phenotype that could be rescued with Ang-1 mRNA. Translation inhibition of Ang-1 resulted in smaller brains in larvae and increased expression of Notch-1, which regulates differentiation of neural stem cells. In situ analysis of newborn large- and small-brained guppies revealed matching expression patterns of Ang-1 and Notch-1 to those observed in zebrafish larvae. Taken together, our results suggest that the genetic architecture affecting brain size in our population may be surprisingly simple, and Ang-1 may be a potentially important locus in the evolution of vertebrate brain size and cognitive ability.  相似文献   

14.
The study of post-reproductive lifespan has been of interest primarily with regard to the extended post-menopausal lifespan seen in humans. This unusual feature of human demography has been hypothesized to have evolved because of the “grandmother” effect, or the contributions that post-reproductive females make to the fitness of their children and grandchildren. While some correlative analyses of human populations support this hypothesis, few formal, experimental studies have addressed the evolution of post-reproductive lifespan. As part of an ongoing study of life history evolution in guppies, we compared lifespans of individual guppies derived from populations that differ in their extrinsic mortality rates. Some of these populations co-occur with predators that increase mortality rate, whereas other nearby populations above barrier waterfalls are relatively free from predation. Theory predicts that such differences in extrinsic mortality will select for differences in the age at maturity, allocation of resources to reproduction, and patterns of senescence, including reproductive declines. As part of our evaluation of these predictions, we quantified differences among populations in post-reproductive lifespan. We present here the first formal, comparative study of the evolution of post-reproductive lifespan as a component of the evolution of the entire life history. Guppies that evolved with predators and that experienced high extrinsic mortality mature at an earlier age but also have longer lifespans. We divided the lifespan into three non-overlapping components: birth to age at first reproduction, age at first reproduction to age at last reproduction (reproductive lifespan), and age at last reproduction to age at death (post-reproductive lifespan). Guppies from high-predation environments live longer because they have a longer reproductive lifespan, which is the component of the life history that can make a direct contribution to individual fitness. We found no differences among populations in post-reproductive lifespan, which is as predicted since there can be no contribution of this segment of the life history to an individual's fitness. Prior work on the evolution of post-reproductive lifespan has been dominated by speculation and correlative analyses. We show here that this component of the life history is accessible to formal study as part of experiments that quantify the different segments of an individual's life history. Populations of guppies subject to different mortality pressures from predation evolved differences in total lifespan, but not in post-reproductive lifespan. Rather than showing the direct effects of selection characterizing other life-history traits, post-reproductive lifespan in these fish appears to be a random add-on at the end of the life history. These findings support the hypothesis that differences in lifespan evolving in response to selection are confined to the reproductive lifespan, or those segments of the life history that make a direct contribution to fitness. We also show, for the first time, that fish can have reproductive senescence and extended post-reproductive lifespans despite the general observation that they are capable of producing new primary oocytes throughout their lives.  相似文献   

15.
Despite ongoing advances in sexual selection theory, the evolution of mating decisions remains enigmatic. Cognitive processes often require simultaneous processing of multiple sources of information from environmental and social cues. However, little experimental data exist on how cognitive ability affects such fitness‐associated aspects of behaviour. Using advanced tracking techniques, we studied mating behaviours of guppies artificially selected for divergence in relative brain size, with known differences in cognitive ability, when predation threat and sex ratio was varied. In females, we found a general increase in copulation behaviour in when the sex ratio was female biased, but only large‐brained females responded with greater willingness to copulate under a low predation threat. In males, we found that small‐brained individuals courted more intensively and displayed more aggressive behaviours than large‐brained individuals. However, there were no differences in female response to males with different brain size. These results provide further evidence of a role for female brain size in optimal decision‐making in a mating context. In addition, our results indicate that brain size may affect mating display skill in male guppies. We suggest that it is important to consider the association between brain size, cognitive ability and sexual behaviour when studying how morphological and behavioural traits evolve in wild populations.  相似文献   

16.
Maintenance of genetic variation in the face of strong natural selection is a long‐standing problem in evolutionary biology. One of the most extreme examples of within‐population variation is the polymorphic, genetically determined color pattern of male Trinidad guppies (Poecilia reticulata). Female mating preference for rare or novel patterns has been implicated as a factor in maintaining this variation. The origin of this preference is not understood, although inbreeding avoidance has been proposed as a mechanism. Inbreeding avoidance is advantageous when populations exhibit inbreeding depression and the opportunity for mating between relatives exists. To determine whether these conditions are met in a natural guppy population, we assessed mating and reproductive patterns using polymorphic molecular markers. Females produced more offspring with less‐related males than with more‐related ones. In addition, females were more likely to have mated with less‐related males, but this trend was only marginally significant. Male heterozygosity was positively correlated with mating success and with the number of offspring sired, consistent with strong inbreeding depression for adult male fitness. These results provide substantial insight into mating patterns of a wild guppy population: strong inbreeding depression occurs, and individuals tend to avoid mating with relatives.  相似文献   

17.
Prior work has demonstrated that, following a predator inspection visit of their own, guppies prefer to associate with individuals who inspected a predator most closely. Based on this work, as well as studies of social learning in the context of mate choice, we predicted that male guppies that observed but did not participate in an inspection trial would subsequently choose to associate with the closer of two inspectors. Our experimental protocol consisted of three treatments: a control test in which an observer watched two fish consecutively, only one of which was exposed to a predator, a sequential test in which an observer watched two fish consecutively, both of which were exposed to the predator, and a social test in which an observer watched two fish inspect simultaneously. We found no preferences by the observer for either of the fish in any of the trials. Our results suggest that direct interaction is a critical component to the development of preferences in male guppies. We discuss our findings in light of game theoretical treatments of cooperation.  相似文献   

18.
Brain size varies dramatically, both within and across species, and this variation is often believed to be the result of trade-offs between the cognitive benefits of having a large brain for a given body size and the energetic cost of sustaining neural tissue. One potential consequence of having a large brain is that organisms must also meet the associated high energetic demands. Thus, a key question is whether metabolic rate correlates with brain size. However, using metabolic rate to measure energetic demand yields a relatively instantaneous and dynamic measure of energy turnover, which is incompatible with the longer evolutionary timescale of changes in brain size within and across species. Morphological traits associated with oxygen consumption, specifically gill surface area, have been shown to be correlates of oxygen demand and energy use, and thus may serve as integrated correlates of these processes, allowing us to assess whether evolutionary changes in brain size correlate with changes in longer-term oxygen demand and energy use. We tested how brain size relates to gill surface area in the blacktip shark Carcharhinus limbatus. First, we examined whether the allometric slope of brain mass (i.e., the rate that brain mass changes with body mass) is lower than the allometric slope of gill surface area across ontogeny. Second, we tested whether gill surface area explains variation in brain mass, after accounting for the effects of body mass on brain mass. We found that brain mass and gill surface area both had positive allometric slopes, with larger individuals having both larger brains and larger gill surface areas compared to smaller individuals. However, the allometric slope of brain mass was lower than the allometric slope of gill surface area, consistent with our prediction that the allometric slope of gill surface area could pose an upper limit to the allometric slope of brain mass. Finally, after accounting for body mass, individuals with larger brains tended to have larger gill surface areas. Together, our results provide clues as to how fishes may evolve and maintain large brains despite their high energetic cost, suggesting that C. limbatus individuals with a large gill surface area for their body mass may be able to support a higher energetic turnover, and, in turn, a larger brain for their body mass.  相似文献   

19.
It has been demonstrated that the exaggeration of male sexual ornaments and the intensity of female mate preferences of a wild guppy population change over a period of several months. However, the factors that determine the short-term changes in male ornaments and female preferences remained unclear. In this study, we examined the effect of season on these short-term changes by measuring these traits in the same seasons of different years for a wild guppy population in Okinawa, Japan. We also compared the characteristics of the offspring in each collection term, as female guppies are known to have the ability to control offspring characteristics, such as brood size and sex ratios, depending on their mates' attractiveness. Results showed that the total lengths of the males changed seasonally; males in the summer were larger than those in the spring. In contrast, the size of orange spots in males and the intensity of female mating preferences differed in the same seasons of different years. Brood size and offspring body size in each term showed seasonal changes. However, offspring sex ratios exhibited different patterns in the same seasons of different years. Females produced female-biased broods when attractive males with large orange spots were rare. These results suggest that short-term changes in some traits of adult male and female guppies as well as offspring sex ratios may be not determined by seasonal factors, and that these traits may be interrelated.  相似文献   

20.
Intraspecific encephalization of the lion and the tiger is investigated for the first time using a very large sample. Using cranial volume as a measure of brain size, the tiger has a larger brain relative to greatest length of skull than the lion, the leopard and the jaguar. The Asian lion has a relatively much smaller brain compared with those of sub-Saharan lions, between which there are few differences. The Balinese and Javan tigers had relatively larger brains compared with those of Malayan and Sumatran tigers, even although these four putative subspecies occupy adjacent ranges in south-eastern Asia. Differences in brain size do not appear to correlate with any known differences in behaviour and ecology and, therefore, may reflect only chance differences in intrageneric and intraspecific phylogeny. However, captive-bred big cats generally have a reduced brain size compared with that of wild animals, so that an animal's life history and living conditions may affect brain size and, hence, functional or environmental explanations should be considered when linking brain size differences to intraspecific phylogenies.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 85–93.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号