首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In PHA-cultured lymphocytes, about 8% of metaphases from 32 women were aneuploid compared to 4% of metaphases from 35 men. A significant part of this aneuploidy was characterized by sex chromosome involvement: in women, the loss or gain of X chromosomes; in men, the gain of X chromosomes and the loss or gain of Y chromosomes. The incidence of this aneuploidy was positively age-related for both sexes. Premature division of the X-chromosome centromere was closely associated with X-chromosome aneuploidy in women and men, and appeared to be the mechanism of nondisjunction causing this aneuploidy. Premature centromere division (PCD) indicated a dysfunction of the X-chromosome centromere with aging, and this dysfunction was the basic cause of age-related aneuploidy. A similar mechanism of nondisjunction may operate for the Y chromosome of men, but could not be clearly demonstrated because of the low incidence of Y-chromosome aneuploidy.The balance of the aneuploidy was characterized by chromosome loss and the involvement of all chromosome groups. It was consistent with chromosome loss from metaphase cells damaged during preparation for cytogenetic examination.  相似文献   

2.
A Robertsonian translocation results in a metacentric chromosome produced by the fusion of two acrocentric chromosomes. Rb heterozygous mice frequently generate aneuploid gametes and embryos, providing a good model for studying meiotic nondisjunction. We intercrossed mice heterozygous for a (7.18) Robertsonian translocation and performed molecular genotyping of 1812 embryos from 364 litters with known parental origin, strain, and age. Nondisjunction events were scored and factors influencing the frequency of nondisjunction involving chromosomes 7 and 18 were examined. We concluded the following: 1. The frequency of nondisjunction among 1784 embryos (3568 meioses) was 15.9%. 2. Nondisjunction events were distributed nonrandomly among progeny. This was inferred from the distribution of the frequency of trisomics and uniparental disomics (UPDs) among all litters. 3. There was no evidence to show an effect of maternal or paternal age on the frequency of nondisjunction. 4. Strain background did not play an appreciable role in nondisjunction frequency. 5. The frequency of nondisjunction for chromosome 18 was significantly higher than that for chromosome 7 in males. 6. The frequency of nondisjunction for chromosome 7 was significantly higher in females than in males. These results show that molecular genotyping provides a valuable tool for understanding factors influencing meiotic nondisjunction in mammals.  相似文献   

3.
Rosenbusch B 《Hereditas》2004,141(2):97-105
Human oocytes failing to fertilize during assisted reproduction are an important source of information for assessing incidence and causal mechanisms of maternal aneuploidy. This review describes the techniques of conventional oocyte chromosome analysis and evaluates the results of 59 studies comprising a total of>10,000 female gametes. The mean rate of aneuploidy (hypohaploidy + hyperhaploidy) amounts to approximately 20%, but this incidence is reduced as soon as possible artifacts introduced by the fixation technique are taken into consideration. It is therefore concluded that a realistic value for numerical abnormalities arising during first meiotic division lies between 12 and 15%. All chromosome groups are affected by aneuploidy but the actually observed frequencies exceed the expected frequencies in groups D, E, and G. Two aneuploidy-causing mechanisms have been identified in human oocytes: nondisjunction, resulting in the loss or gain of whole chromosomes, and predivision, resulting in the loss or gain of single chromatids. A brief analysis including only aneuploid complements with one extra or missing chromosome/chromatid shows a slight increase in predivision (52.9%) compared with nondisjunction (47.1%). Finally, suggestions for future studies are given since, for instance, the presentation of results and the use of cytogenetic nomenclature have not been uniform.  相似文献   

4.
Mice bearing Robertsonian translocation chromosomes frequently produce aneuploid gametes. They are therefore excellent tools for studying nondisjunction in mammals. Genotypic analysis of embryos from a mouse cross between two different strains of mice carrying a (7, 18) Robertsonian chromosome enabled us to measure the rate of nondisjunction for chromosomes 7 and 18. Embryos (429) were harvested from 76 litters of mice and the parental origin of each chromosome 7 and 18 determined. Genotyping these embryos has allowed us to conclude the following: (1) there were 96 embryos in which at least one nondisjunction event had taken place; (2) the rate of maternal nondisjunction was greater than paternal nondisjunction for the chromosomes sampled in these mice; (3) a bias against chromosome 7 and 18 nullisomic gametes was observed, reflected in a smaller than expected number of uniparental disomic embryos; (4) nondisjunction events did not seem to occur at random throughout the 76 mouse litters, but were clustered into fewer than would be expected by chance; and (5) a deficiency of paternal chromosome 18 uniparental disomic embryos was observed along with a higher than normal rate of developmental retardation at 8.5 days post coitum, raising the possibility that this chromosome has at least one imprinted gene.  相似文献   

5.
In the mouse, gametes with gross chromosome duplications and deficiencies can complement each other to give viable zygotes (with some notable exceptions involving particular chromosomes). These complementation-type offspring can be recognised in intercrosses between translocation heterozygotes in which one parent is homozygous for a recessive genetic marker not carried by the other. This system has beeN used by Lyon and colleagues (1976) to study non-disjunction in heterozygotes for tobacco mouse and laboratory-derived Robertsonian translocations. Although non-disjunction is frequent in the former group, still higher frequencies are needed for a workable test system in which wild type mice are treated and mated to a tester stock generating many aneuploid gametes. Possible approaches include (1) use of semidominant markers, (2) marking both arms, (3) combining two or three independent Robertsonians in the tester stock, (4) use of compounds of Robertsonians wih monobrachial homology, since these give very high frequencies of non-disjunction, (5) generation of a compound of three Robertsonians with tribrachial homology, which should produce aneuploid gametes only. This last seems the most promising approach, if the compound proves fertile, and would be analogous to the isochromosome system of Drosophila.  相似文献   

6.
Oocytes derived from prepubertal gilts show reduced developmental competence when compared to oocytes collected from adult sows. Therefore, the aim of the study was to investigate whether gilts (4-5 months old) and adult sows (average age 3.5 years) of the same breed (Polish Landrace x Polish Large White crossbred) differ with regard to the rate of chromosomally unbalanced oocytes after IVM. COCs derived from individual pairs of slaughterhouse ovaries were matured in vitro and analyzed cytogenetically by conventional staining (Giemsa) and FISH methods (probes corresponding to centromeric regions of pig chromosomes 1 and 10). Altogether, 72 females (31 sows, 41 gilts) and 430 secondary oocytes (194 and 236 oocytes of sows and gilts, respectively) were investigated. Cytogenetic analysis revealed diploid (Giemsa, FISH) and aneuploid (FISH) spreads. The incidence of diploid oocytes was similar for sows (26.0%) and gilts (24.5%) whereas the rate of aneuploid oocytes (nullisomic/disomic) was eight times higher in gilts (10.8%) than in sows (1.3%). Diploid and aneuploid oocytes were observed in 64% of investigated females. Pig chromosome 10 was more frequently disomic/nullisomic compared to chromosome 1 suggesting, that like in human, small porcine chromosomes are often involved in the nondisjunction process. In conclusion, chromosomal imbalance significantly contributes to in vitro embryo production in the pig, since over 60% of females produced diploid or aneuploid gametes. The significantly higher rate of aneuploidy among oocytes derived from gilt ovaries may contribute to the reduced developmental competence of gametes collected from nonmature female pigs.  相似文献   

7.
Is there selection against aneuploid sperm during spermatogenesis and fertilization? To address this question, we used male mice doubly heterozygous for the Robertsonian (Rb) translocations Rb(6. 16)24Lub and Rb(16.17)7Bnr, which produce high levels of sperm aneuploid for chromosome 16, the mouse counterpart of human chromosome 21. The frequencies of aneuploid male gametes before and after fertilization were compared by analyzing approximately 500 meiosis II spermatocytes and approximately 500 first-cleavage zygotes using fluorescence in situ hybridization with a DNA painting probe mixture containing three biotin-labeled probes specific for chromosomes 8, 16, and 17 plus a digoxigenin-labeled probe specific for chromosome Y. Hyperhaploidy for chromosome 16 occurred in 20.0% of spermatocytes and in 21.8% of zygotes. Hypohaploidy for chromosome 16 occurred in 17.0% and 16.7% of spermatocytes and zygotes, respectively. In addition, there was no preferential association between chromosome 16 aneuploidy and either of the sex chromosomes, nor was there an elevation in aneuploidy for chromosomes not involved in the Rb translocations. These findings provide direct evidence that there is no selection against aneuploid sperm during spermiogenesis, fertilization, and the first cell cycle of zygotic development.  相似文献   

8.
Richard C. Gethmann 《Genetics》1974,78(4):1127-1142
Two second chromosome, EMS-induced, meiotic mutants which cause an increase in second chromosome nondisjunction are described. The first mutant is recessive and causes an increase in second chromosome nondisjunction in both males and females. It causes no increase in nondisjunction of the sex chromosomes in either sex, nor of the third chromosome in females. No haplo-4-progeny were recovered from either sex. Thus, it appears that this mutant, which is localized to the second chromosome, affects only second chromosome disjunction and acts in both sexes.-The other mutant affects chromosome disjunction in males and has no effect in females. Nondisjunction occurs at the first meiotic division. Sex chromosome disjunction in the presence of this mutant is similar to that of sc(4)sc(8), with an excess of X and nullo-XY sperm relative to Y and XY sperm. In some lines, there is an excess of nullo-2 sperm relative to diplo-2 sperm, which appears to be regulated, in part, by the Y chromosome. A normal Y chromosome causes an increase in nullo-2 sperm, where B(s)Y does not. There is also a high correlation between second and sex chromosome nondisjunction. Nearly half of the second chromosome exceptions are also nondisjunctional for the sex chromosomes. Among the double exceptions, there is an excess of XY nullo-2 and nullo-XY diplo-2 gametes. Meiotic drive, chromosome loss and nonhomologous pairing are considered as possible explanations for the double exceptions.  相似文献   

9.
In this report some data concerning the male meiotic system of mice heterozygous for Rb(11.13)4Bnr are presented and compared with those of a chromosomally normal Swiss random-bred stock. Change of the genetic background from a C3H/Swiss hybrid situation to the fourth backcross generation (to the Swiss random-bred stock), did not alter the average frequency of aneuploid secondary spermatocytes. This was confirmed by studies on post-implantation loss. Spermatogenic characteristics of Rb4/+ mice, such as testis weight, sperm production and the number of diplotene-metaphase-I figures found in stage XII of the seminiferous epithelium, suggest delay and cell death during this period. These data support our working hypothesis that such an aberrant chromosome system may be more prone to radiation effects and therefore is promising in our cytological studies into the causes of spontaneous and in our cytological studies into the causes of spontaneous and induced autosomal non-disjunction during meiosis in the mouse.  相似文献   

10.
An account is provided of two genetic schemes in the Drosophila melanogaster female designed as rapid detectors of chemically induced aneuploidy, including both chromosome gain and chromosome loss. One scheme is referred to as FIX, in which the female carried free (heterozygously) inverted X (chromosomes) and the other, ZESTE, where females do not carry inversions and the X-linked sexually dimorphic zeste mutation plays the key role in the detection of aneuploid offspring. The principle attribute of the FIX system is that all euploid offspring are wild-type for body and eye color whereas aneuploid females have a yellow body and aneuploid males white eyes; int he ZESTE system all euploid individuals are wild-type for eye color, aneuploid females possess zeste-colored eyes and aneuploid males white eyes. In addition induced polyploidies (2X:2A gametes) appear as yellow and zeste male intersexes in the FIX and ZESTE systems, respectively. In this way all aneuploids are recognized immediately. Consequently, detection of compounds with weak effects requiring large sample sizes may be made in a fraction of the time associated with more traditional schemes for aneuploidy detection in Drosophila.  相似文献   

11.
James M. Mason 《Genetics》1976,84(3):545-572
The effects of a semidominant autosomal meiotic mutant, orientation disruptor (symbol: ord), located at 2–103.5 on the genetic map and in region 59B-D of the salivary map, have been examined genetically and cytologically. The results are as follows. (1) Crossing over in homozygous females is reduced to about seven percent of controls on all chromosomes, with the reduction greatest in distal regions. (2) Crossing over on different chromosomes is independent. (3) Reductional nondisjunction of any given chromosome is increased to about thirty percent of gametes from homozygous females. The probability of such nondisjunction is the same among exchange and nonexchange tetrads with the exception that a very proximal exchange tends to regularize segregation. (4) Equational nondisjunction of each chromosome is increased to about ten percent of gametes in homozygous females; this nondisjunction is independent of exchange. (5) The distributive pairing system is operative in homozygous females. (6) In homozygous males, reductional nondisjunction of each chromosome is increased to about ten percent, and equational nondisjunction to about twenty percent, of all gametes. (7) Cytologically, two distinct meiotic divisions occur in spermatocytes of homozygous males. The first division looks normal although occasional univalents are present at prophase I and a few lagging chromosomes are seen at anaphase I. However, sister chromatids of most chromosomes have precociously separated by metaphase II. Possible functions of the ord+ gene are considered.  相似文献   

12.
Meiosis was studied in male South American marsh rats (1) to help clarify the mechanisms that allow unusually high levels of Robertsonian (Rb) polymorphisms to be maintained in wild populations of these animals and (2) to test competing assumptions in two distinct models of chromosomal speciation. In both simple Rb heterozygotes and Rb heterozygotes with monobrachial homology, no univalency was observed in prophase I or metaphase I. Rates of nondisjunction were uniformly low (less than 10%) and did not differ significantly among any of the animals studied, regardless of karyotype and in contrast to the frequency of nondisjunction in other mammalian species. Robertsonian heterozygotes exhibited significantly more chiasmata than did homozygotes, largely owing to an increase in the number of terminally located chiasmata. There was a significant bias favoring the transmission of two acrocentrics over the single metacentric for some Rb rearrangements in the heterozygous state. In addition, the frequency of sex-chromosome univalency increased with increasing Rb heterozygosity, although the ratio of X- and Y-bearing secondary spermatocytes did not differ significantly from 1:1, and no secondary spermatocytes were observed that were nullisomic or disomic for an X or Y chromosome.  相似文献   

13.
Summary It is shown that mei-S332, a semidominant mutant in Drosophila melanogaster, has the following properties: 1) It maps at about position 95 on the right arm of chromosome 2. 2) Its primary result is the precocious division of sister centromeres, which leads to nondisjunction, mostly equational, and loss for all chromosomes in both sexes. 3) Chromosome pairs behave approximately independently. 4) Gamete types for each chromosome appeared in the approximate ratios of 0.20 nullo-gametes: 0.12 diplo-gametes: 0.68 regular gametes for experiments reported here. 5) Exchange is correlated with a lower probability of reductional nondisjunction, but is independent of the probability of equational nondisjunction. 6) Since the phenotype of mei-S332 is similar in the two sexes, at least part of the meiotic events and their control for the second division and perhaps also the first division is the same in the two sexes. 7) Mosaics, resulting from mitotic chromosome loss appear among progeny of mei-S332 parents.Adapted from a dissertation presented in partial fulfillment of the degree of Doctor of Philosophy. The research was supported by a PHS Training Grant and PHS Grant RG-9965.  相似文献   

14.
We report the development of four microsatellite loci into genetic markers for the diploid oomycete plant pathogen Phytophthora cinnamomi and that (AC)(n) and (AG)(n) microsatellites are significantly less frequent than in plant and mammal genomes. A minisatellite motif 14 bp long was also discovered. The four microsatellite loci were used to analyze sexual progeny from four separate crosses of P. cinnamomi. A large proportion of non-Mendelian inheritance was observed across all loci in all four crosses, including inheritance of more than two alleles at a locus and noninheritance of alleles from either parent at a locus. The aberrant inheritance is best explained by nondisjunction at meiosis in both the A1 parent and the A2 trisomic parents, resulting in aneuploid progeny. Two loci on the putative trisomic chromosome showed linkage and no loci were linked to mating type. One aneuploid offspring was shown to have lost alleles at two loci following subculture over 4 years, indicating that aneuploid progeny may not be mitotically stable.  相似文献   

15.
Univalent behavior during meiosis has been examined in Drosophila melanogaster males possessing the In(1)sc4Lsc8R X chromosome using light microscopy and serial section electron microscopy. Males from two stocks, displaying high (0.40) and low (0.14) frequencies of sex chromosome nondisjunction, have been investigated. The results demonstrate that (i) sex chromosomes are more intimately paired during prometaphase I in males from the low nondisjunction stock than in males from the high nondisjunction stock, and (ii) the univalents are distributed to the poles in an unbiased manner during meiosis rather than by directed segregation of both univalents to the same pole as previously determined for other In(1)sc4Lsc8R/Y males.  相似文献   

16.
A total of 209 ethyl methanesulfonate-treated X chromosomes were screened for meiotic mutants that either (1) increased sex or fourth chromosome nondisjunction at either meiotic division in males; (2) allowed recombination in such males; (3) increased nondisjunction of the X chromosome at either meiotic division in females; or (4) caused such females, when mated to males heterozygous for Segregation-Distorter (SD) and a sensitive homolog to alter the strength of meiotic drive in males.-Twenty male-specific meiotic mutants were found. Though the rates of nondisjunction differed, all twenty mutants were qualitatively similar in that (1) they alter the disjunction of the X chromosome from the Y chromosome; (2) among the recovered sex-chromosome exceptional progeny, there is a large excess of those derived from nullo-XY as compared to XY gametes; (3) there is a negative correlation between the frequency of sex-chromosome exceptional progeny and the frequency of males among the regular progeny. In their effects on meiosis these mutants are similar to In(1)sc(4L)sc(8R), which is deleted for the basal heterochromatin. These mutants, however, have normal phenotypes and viabilities when examined as X/0 males, and furthermore, a mapping of two of the mutants places them in the euchromatin of the X chromosome. It is suggested that these mutants are in genes whose products are involved in insuring the proper functioning of the basal pairing sites which are deleted in In(1)sc(4L)sc(8R), and in addition that there is a close connection, perhaps causal, between the disruption of normal X-Y pairing (and, therefore, disjunction) and the occurrence of meiotic drive in the male.-Eleven mutants were found which increased nondisjunction in females. These mutants were characterized as to (1) the division at which they acted; (2) their effect on recombination; (3) their dominance; (4) their effects on disjunction of all four chromosome pairs. Five female mutants caused a nonuniform decrease in recombination, being most pronounced in distal regions, and an increase in first division nondisjunction of all chromosome pairs. Their behavior is consistent with the hypothesis that these mutants are defective in a process which is a precondition for exchange. Two female mutants were allelic and caused a uniform reduction in recombination for all intervals (though to different extents for the two alleles) and an increase in first-division nondisjunction of all chromosomes. Limited recombination data suggest that these mutants do not alter coincidence, and thus, following the arguments of Sandler et al. (1968), are defective in exchange rather than a precondiiton for exchange. A single female mutant behaves in a manner that is consistent with it being a defect in a gene whose functioning is essential for distributive pairing. Three of the female meiotic mutants cause abnormal chromosome behavior at a number of times in meiosis. Thus, nondisjunction at both meiotic divisions is increased, recombinant chromosomes nondisjoin, and there is a polarized alteration in recombination.-The striking differences between the types of control of meiosis in the two sexes is discussed and attention is drawn to the possible similarities between (1) the disjunction functions of exchange and the process specified by the chromosome-specific male mutants; and (2) the prevention of functional aneuploid gamete formation by distributive disjunction and meiotic drive.  相似文献   

17.
A collection of chl mutants characterized by decreased fidelity of chromosome transmission and by minichromosome nondisjunction in mitosis was examined for the ability to maintain nonessential dicentric plasmids. In one of the seven mutants analyzed, chl4, dicentric plasmids did not depress cell division. Moreover, nonessential dicentric plasmids were maintained stably without any rearrangements during many generations in the chl4 mutant. The rate of mitotic heteroallelic recombination in the chl4 mutant was not increased compared to that in an isogenic wild-type strain. Analysis of the segregation of a marked chromosome indicated that sister chromatid nondisjunction and sister chromatid loss contributed equally to chromosome malsegregation in the chl4 mutant. A genomic clone of CHL4 was isolated by complementation of the chl4-1 mutation and was physically mapped to the right arm of chromosome IV near the SUP2 gene. Nucleotide sequence analysis of CHL4 clone revealed a 1.4-kb open reading frame coding for a 53-kD predicted protein which does not have homology to published proteins. A strain containing a null allele of CHL4 is viable under standard growth conditions but has a temperature-sensitive phenotype (conditional lethality at 36°). We suggest that the CHL4 gene is required for kinetochore function in the yeast Saccharomyces cerevisiae.  相似文献   

18.
The aim of the present study was to investigate whether there was an increase of aneuploidy in the sperm from fathers of Turner syndrome patients of paternal origin who, in a previous study, showed an elevated incidence of XY meiotic nondisjunction. Sperm disomy frequencies for chromosomes 4, 13, 18, 21 and 22 were assessed by fluorescence in situ hybridisation in four of these individuals. As a group, the Turner syndrome fathers showed a general increase in disomy frequencies for chromosomes 13, 21 and 22, with a statistically significant increase in disomy frequencies for chromosomes 13 and 22 in one of the fathers and for chromosome 21 in two of them. Data from a previous work carried out by us in two fathers of Down syndrome patients of paternal origin also revealed increased sperm disomy frequencies for chromosomes 13, 21 and 22. Pooled as one group, these six fathers of aneuploid offspring of paternal origin had a statistically significant increase in the frequency of nondisjunction for these chromosomes with respect to control individuals. Our findings indicate that there may be an association between fathering aneuploid offspring and increased frequencies of aneuploid spermatozoa. Such increases do not seem to be restricted to the chromosome pair responsible for the aneuploid offspring. Acrocentric chromosomes and other chromosome pairs that usually show only one chiasma during meiosis seem to be more susceptible to malsegregation.  相似文献   

19.
Zhao ZY  Weber DF 《Genetics》1988,119(4):975-980
The r-X1 deficiency in maize induces nondisjunction at the second mitotic division during embryo sac formation. However, it was not known if this deficiency also induces nondisjunction during the microspore divisions. Microsporogenesis in plants lacking or containing this deficiency was compared using two approaches. First, chromosome numbers were determined in generative nuclei. Many (8.3%) of the generative nuclei in r-X1-containing plants were aneuploid; however, those from control plants were all haploid. Thus, this deficiency induces nondisjunction during the first microspore division. Second, nucleoli were analyzed in microspores. The only nucleolar organizing region in maize is on chromosome 6. If chromosome 6 underwent nondisjunction during the first microspore division, one nucleus in binucleate microspores would contain no nucleolus and the other would contain two nucleoli (or one nucleolus if the nucleoli fused). Only one (0.03%) microspore of this type was observed in control plants while 1.12% were found in r-X1-containing plants. Thus, the r-X1 deficiency induces nondisjunction of chromosome 6 during the first microspore division. However, both of the sperm nuclei in trinucleate microspores contained one nucleolus in r-X1-containing and control plants; thus, this deficiency does not induce nondisjunction of chromosome 6 (and presumably other chromosomes) during the second microspore division.  相似文献   

20.
Fluorescent in situ hybridization (FISH) utilizing an X chromosome whole library probe was used directly to assess the rate of aneuploidy and pairing behavior of the X chromosome in human female meiosis. Over 3000 meiotic cells obtained from fetal ovaries (gestational age 13–22 weeks) were scored for meiotic stage and evaluated for pairing abnormalities. No pairing anomalies were observed in 832 pachytenes. Twenty-two percent (88/398) of cells in zygotene were partially paired, but nonhomologous pairings could not be identified. One aneuploid preleptotene oocyte, presumably from mitotic nondisjunction was detected. To our knowledge, this is the first report of the use of FISH utilizing whole chromosome probes to evaluate the pairing behavior of chromosomes in human female meiosis. The application of this technique to study the relationship between nondisjunction and chromosome pairing behavior in maternal-age-related aneuploidy is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号