共查询到20条相似文献,搜索用时 0 毫秒
1.
1. The pathway of glutamate metabolism in non-synaptic rat brain mitochondria was investigated by measuring glutamate, aspartate and ammonia concentrations and oxygen uptakes in mitochondria metabolizing glutamate or glutamine under various conditions. 2. Brain mitochondria metabolizing 10mm-glutamate in the absence of malate produce aspartate at 15nmol/min per mg of protein, but no detectable ammonia. If amino-oxyacetate is added, the aspartate production is decreased by 80% and ammonia production is now observed at a rate of 6.3nmol/min per mg of protein. 3. Brain mitochondria metabolizing glutamate at various concentrations (0-10mm) in the presence of 2.5mm-malate produce aspartate at rates that are almost stoicheiometric with glutamate disappearance, with no detectable ammonia production. In the presence of amino-oxyacetate, although the rate of aspartate production is decreased by 75%, ammonia production is only just detectable (0.3nmol/min per mg of protein). 4. Brain mitochondria metabolizing 10mm-glutamine and 2.5mm-malate in States 3 and 4 were studied by using glutamine as a source of intramitochondrial glutamate without the involvement of mitochondrial translocases. The ammonia production due to the oxidative deamination of glutamate produced from the glutamine was estimated as 1nmol/min per mg of protein in State 3 and 3nmol/min per mg of protein in State 4. 5. Brain mitochondria metabolizing 10mm-glutamine in the presence of 1mm-amino-oxyacetate under State-3 conditions in the presence or absence of 2.5mm-malate showed no detectable aspartate production. In both cases, however, over the first 5min, ammonia production from the oxidative deamination of glutamate was 21-27nmol/min per mg of protein, but then decreased to approx. 1-1.5nmol/min per mg. 6. It is concluded that the oxidative deamination of glutamate by glutamate dehydrogenase is not a major route of metabolism of glutamate from either exogenous or endogenous (glutamine) sources in rat brain mitochondria. 相似文献
2.
1. Oxidation of pyruvate by rat brain mitochondria was stimulated in state 3 by malate or succinate up to 250 nmoles O2/mg protein/min. Oxidation of malate, succinate, 2-oxoglutarate or glutamate as the sole substrates, was 1/4 - 1/5 that observed with pyruvate. 2. Maximum oxygen consumption in state 3 was observed at pH 6.90 - 7.20, whereas in state 4 it was not affected by changes in pH. 3. In state 4, in the absence of exogenous acceptor or acetyl residues, acetate was the main oxidation product, corresponding to about 80% of the amount of pyruvate utilized. Malate did not affect the rate of pyruvate utilization but lowered acetate concentration and raised concentration of citrate and 2-oxoglutarate. 4. In state 3, pyruvate and malate were converted mainly to 2-oxoglutarate, its concentration being three times as high as that of citrate. 5. Formation of citrate, 2-oxoglutarate and acetate from pyruvate in brain is considered as a function of availability of the acceptor of acetyl residues and the energy state of mitochondrion. 相似文献
3.
The regulation and glutamate metabolism by tricarboxylic acid-cycle activity in rat brain mitochondria 总被引:6,自引:0,他引:6 下载免费PDF全文
1. The interrelationship of metabolism of pyruvate or 3-hydroxybutyrate and glutamate transamination in rat brain mitochondria was studied. 2. If brain mitochondria are incubated in the presence of equimolar concentrations of pyruvate and glutamate and the K(+) concentration is increased from 1 to 20mm, the rate of pyruvate utilization is increased 3-fold, but the rate of production of aspartate and 2-oxoglutarate is decreased by half. 3. Brain mitochondria incubated in the presence of a fixed concentration of glutamate (0.87 or 8.7mm) but different concentrations of pyruvate (0 to 1mm) produce aspartate at rates that decrease as the pyruvate concentration is increased. At 1mm-pyruvate, the rate of aspartate production is decreased to 40% of that when zero pyruvate was present. 4. Brain mitochondria incubated in the presence of glutamate and malate alone produce 2-oxoglutarate at rates stoicheiometric with the rate of aspartate production. Both the 2-oxoglutarate and aspartate accumulate extramitochondrially. 5. Externally added 2-oxoglutarate has little inhibitory effect (K(i) approx. 31mm) on the production of aspartate from glutamate by rat brain mitochondria. 6. It is concluded that the inhibitory effect of increased C(2) flux into the tricarboxylic acid cycle on glutamate transamination is caused by competition for oxaloacetate between the transaminase and citrate synthase. 7. Evidence is provided from a reconstituted malate-aspartate (or Borst) cycle with brain mitochondria that increased C(2) flux into the tricarboxylic acid cycle from pyruvate may inhibit the reoxidation of exogenous NADH. These results are discussed in the light of the relationship between glycolysis and reoxidation of cytosolic NADH by the Borst cycle and the requirement of the brain for a continuous supply of energy. 相似文献
4.
1. The metabolism and transport of glutamate and glutamine in rat brain mitochondria of non-synaptic origin has been studied in various states. 2. These mitochondria exhibited glutamate uptake and swelling in iso-osmotic ammonium glutamate, both of which were inhibited by N-ethylmaleimide. 3. The oxidation of glutamate was inhibited by 20% by avenaciolide, but glutamine oxidation was not affected. 4. These mitochondria, when metabolizing glutamine, allowed glutamate, but very little aspartate, to efflux at considerable rates. 5. These results suggests that brain mitochondria of non-synaptic origin possess in addition to a relatively rapid glutamate-aspartate translocase, a relatively slow aspartate-independent glutamate-OH-translocase (cf. liver mitochondria). 相似文献
5.
Malonate metabolism in rat brain mitochondria 总被引:6,自引:0,他引:6
6.
The active state respiration of isolated rat kidney cortex mitochondria with 10 mM glutamate as single substrate is substantially increased by the addition of 10 mM glutamine. This increase in respiration was accompanied by a higher transamination rate and was found to be insensitive to the selective inhibition of either the transamination or the desamination pathway of glutamate oxidation. These data can be explained by an approximately 2-fold elevated intramitochondrial glutamate concentration observed in the additional presence of glutamine. 相似文献
7.
8.
9.
Calcium overload of neural cell mitochondria plays a key role in excitotoxic and ischemic brain injury. This study tested the hypothesis that brain mitochondria consist of subpopulations with differential sensitivity to calcium-induced inner membrane permeability transition, and that this sensitivity is greatly reduced by physiological levels of adenine nucleotides. Isolated non-synaptosomal rat brain mitochondria were incubated in a potassium-based medium in the absence or presence of ATP or ADP. Measurements were made of medium and intramitochondrial free calcium, light scattering, mitochondrial ultrastructure, and the elemental composition of electron-opaque deposits within mitochondria treated with calcium. In the absence of adenine nucleotides, calcium induced a partial decrease in light scattering, accompanied by three distinct ultrastructural morphologies, including large-amplitude swelling, matrix vacuolization and a normal appearance. In the presence of ATP or ADP the mitochondrial calcium uptake capacity was greatly enhanced and calcium induced an increase rather than a decrease in mitochondrial light scattering. Approximately 10% of the mitochondria appeared damaged and the rest contained electron-dense precipitates that contained calcium, as determined by electron-energy loss spectroscopy. These results indicate that brain mitochondria are heterogeneous in their response to calcium. In the absence of adenine nucleotides, approximately 20% of the mitochondrial population exhibit morphological alterations consistent with activation of the permeability transition, but less than 10% exhibit evidence of osmotic swelling and membrane disruption in the presence of ATP or ADP. 相似文献
10.
N S Nilova 《Biokhimii?a (Moscow, Russia)》1976,41(10):1778-1783
Glutamate oxidation in vitro via deamination and transamination during gramicidin C-induced transport of K+ and Na+ in rat nervous tissue mitochondria was studied. An increase in ammonium production, i.e. in glutamate oxidation due to deamination, was shown to occur with maximal increase of oxygen consumption in the presence of cations. It was found that 1.5 mM Na+ activate oxygen consumption by 15% and accelerate ammonium production from glutamate (by 17%). No changes in aspartate production were observed. 15 mM K+ increase oxygen consumption by 29% and ammonium production by 11% during a decrease in aspartate production as compared to glutamate oxidation in the presence of a lower (10 mM) concentration of K+ in the samples. 相似文献
11.
Studies on the control of 4-aminobutyrate metabolism in ''synaptosomal'' and free rat brain mitochondria. 下载免费PDF全文
1. The specific activities of 4-aminobutyrate aminotransferase (EC 2.6.1.19) and succinate semialdehyde dehydrogenase (EC 1.2.1.16) were significantly higher in brain mitochondria of non-synaptic origin (fraction M) than those derived from the lysis of synaptosomes (fraction SM2). 2. The metabolisms of 4-aminobutyrate in both 'free' (non-synaptic, fraction M) and 'synaptic' (fraction SM2) rat brain mitochondria was studied under various conditions. 3. It is proposed that 4-aminobutyrate enters both types of brain mitochondria by a non-carrier-mediated process. 4. The rate of 4-aminobutyrate metabolism was in all cases higher in the 'free' (fraction M) brain mitochondria than in the synaptic (fraction SM2) mitochondria, paralleling the differences in the specific activities of the 4-aminobutyrate-shunt enzymes. 5. The intramitochondrial concentration of 2-oxoglutarate appears to be an important controlling parameter in the rate of 4-aminobutyrate metabolism, since, although 2-oxoglutarate is required, high concentrations (2.5 mM) of extramitochondrial 2-oxoglutarate inhibit the formation of aspartate via the glutamate-oxaloacetate transaminase. 6. The redox state of the intramitochondrial NAD pool is also important in the control of 4-aminobutyrate metabolism; NADH exhibits competitive inhibition of 4-aminobutyrate metabolism by both mitochondrial populations with an apparent Ki of 102 muM. 7. Increased potassium concentrations stimulate 4-aminobutyrate metabolsim in the synaptic mitochondria but not in 'free' brain mitochondria. This is discussed with respect to the putative transmitter role of 4-aminobutyrate. 相似文献
12.
13.
A teichoic acid degrading enzyme (teichoicase) was purified to apparent homogeneity from a water-soluble cell extract of sporulating Bacillus subtilis cells. A rapid test for the detection of teichoicase activity was developed. The purified teichoicase has an app. Mr = 310 000. It consists of 4 identical subunits of Mr = 78 000 each. 相似文献
14.
15.
16.
Regulation of pyruvate metabolism via pyruvate carboxylase in rat brain mitochondria 总被引:3,自引:3,他引:3 下载免费PDF全文
1. The fixation of CO(2) by pyruvate carboxylase in isolated rat brain mitochondria was investigated. 2. In the presence of pyruvate, ATP, inorganic phosphate and magnesium, rat brain mitochondria fixed H(14)CO(3) (-) into tricarboxylic acid-cycle intermediates at a rate of about 250nmol/30min per mg of protein. 3. Citrate and malate were the main radioactive products with citrate containing most of the radioactivity fixed. The observed rates of H(14)CO(3) (-) fixation and citrate formation correlated with the measured activities of pyruvate carboxylase and citrate synthase in the mitochondria. 4. The carboxylation of pyruvate by the mitochondria had an apparent K(m) for pyruvate of about 0.5mm. 5. Pyruvate carboxylation was inhibited by ADP and dinitrophenol. 6. Malate, succinate, fumarate and oxaloacetate inhibited the carboxylation of pyruvate whereas glutamate stimulated it. 7. The results suggest that the metabolism of pyruvate via pyruvate carboxylase in brain mitochondria is regulated, in part, by the intramitochondrial concentrations of pyruvate, oxaloacetate and the ATP:ADP ratio. 相似文献
17.
18.
Comparative development of the pyruvate dehydrogenase complex and citrate synthase in rat brain mitochondria. 总被引:7,自引:0,他引:7 下载免费PDF全文
The enzyme activity of the pyruvate dehydrogenase complex (PDHC) was measured in mitochondria prepared from developing rat brain, before and after steady-state dephosphorylation of the E1 alpha subunit. A marked increase in dephosphorylated (fully activated) PDHC activity occurred between days 10 and 15 post partum, which represented approx. 60% of the difference in fully activated PDHC activity measured in foetal and adult rat brain mitochondria. There was no detectable change in the active proportion of the enzyme during mitochondrial preparation nor any qualitative alteration in the detectable catalytic and regulatory components of the complex, which might account for developmental changes in PDHC activity. The PDHC protein content of developing rat brain mitochondria and homogenates was measured by an enzyme-linked immunoadsorbent assay. The development of PDHC protein in both fractions agreed closely with the development of the PDHC activity. The results suggest that the developmental increase in PDHC activity is due to increased synthesis of PDHC protein, which is partly a consequence of an increase in mitochondrial numbers. However, the marked increase in PDHC activity measured between days 10 and 15 post partum is mainly due to an increase in the amount of PDHC per mitochondrion. The development of citrate synthase enzyme activity and protein was measured in rat brain homogenates and mitochondria. As only a small increase in citrate synthase activity and protein was detected in mitochondria between days 10 and 15 post partum, the marked increase in PDHC protein and enzyme activity may represent specific PDHC synthesis. As several indicators of acquired neurological competence become apparent during this period, it is proposed that preferential synthesis of PDHC may be crucial to this process. The results are discussed with respect to the possible roles played by PDHC in changes of respiratory-substrate utilization and the acquisition of neurological competence occurring during the development of the brain of a non-precocial species such as the rat. 相似文献
19.