首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hereditary non-polyposis colorectal cancer (HNPCC) is a genetic disorder caused by mutation in one of the mismatch repair (MMR) genes (MLH1, MSH2, MSH6, PMS2) which predisposes to colorectal cancer and other malignances, that not yet include sarcomas. For sustaining that soft tissue sarcomas could be HNPCC related malignances, we report on a HNPCC patient with leiomyosarcoma and review the English literature. Overall, we report on eleven cases of soft tissue malignant tumors involving HNPCC patients, with a mean age of 34 years at diagnosis of sarcomas. In the majority of these tumors loss of MSH2 expression can be found at immunohistochemistry (IHC) and in 10 patients a germline mutation in one of the MMR genes was found (7 cases were MSH2 defective and 3 cases MLH1 defective). Data for supporting our hypothesis are also experimental, epidemiologic, histopathological: excess of sarcomas in PMS2 defective mice; sporadic soft tissue sarcomas are rare, with mean age at onset of 56 years and normal IHC for MMR proteins. In conclusion, the data collected support the hypothesis that soft tissue sarcomas could be included in the spectrum of tumors that, even if rarely, depend on MMR genes deficiency.  相似文献   

2.
Hereditary nonpolyposis colorectal cancer (HNPCC) is a syndrome characterized by familial predisposition to colorectal carcinoma and extracolonic cancers of the gastrointestinal, urological, and female reproductive tracts. This dominant disorder is caused by germline defects in one of at least five DNA mismatch repair (MMR) genes: hMLH1, hMSH2, hPMS1, hPMS2, and hMSH6 (GTBP). Germline mutations of hMSH2 and hMLH1 are also frequently identified in families not fulfilling all the Amsterdam criteria, thereby demonstrating that the involvement of these genes is not confined to typical HNPCC. To evaluate the respective involvement of the various MMR genes in typical and incomplete HNPCC syndromes, we have performed an analysis of the hMLH1, hMSH2, hPMS1, hPMS2, and hMSH6 genes in a large series of French kindreds (n=75) with colorectal tumors and/or aggregation of extracolonic cancers belonging to the HNPCC spectrum. Mutational analysis has been performed in all families, without preselection for the tumor phenotype. We have detected 26 pathogenic germline mutations of the hMLH1 and hMSH2 genes and several novel variants of the hPMS1, hPMS2, and hMSH6 genes. Our data confirm that, regardless of the type of families and the tumor phenotype, hPMS1, hPMS2, and hMSH6 germline mutations are rare in familial aggregation of colorectal cancers. Furthermore, they suggest that the presence of multiple primary malignancies in a single individual and the observation of extracolonic tumors in relatives of a colorectal cancer patient should be included among the guidelines for referring patients for genetic testing. Electronic Publication  相似文献   

3.
Mismatch repair (MMR) gene mutations cause hereditary nonpolyposis colorectal cancer (HNPCC), a common form of familial colorectal cancer. Among MMR genes, germline MSH6 mutations are often observed in HNPCC-like families with an increased frequency of endometrial cancer. We have previously shown that a proportion of women affected with double primary cancers of the colorectum and endometrium carry germline MSH2 or MLH1 mutations and, thus, belong to HNPCC families. In this study, we have investigated the specific contribution of MSH6 defects to such double primary patients. By sequence analysis of the entire coding region of MSH6, three putative missense mutations were identified in patients with atypical family histories that do not meet HNPCC criteria. Moreover, one of these mutations, a novel substitution Arg901 His, was found in a patient previously shown to carry a truncating germline MLH1 mutation. Thus, MSH6 mutations are likely to contribute to the etiology of double primary cancers of the colorectum and endometrium.  相似文献   

4.
Hereditary nonpolyposis colorectal cancer (HNPCC) accounts for approximately 2% of all colorectal cancer (CRC) cases and is the most common hereditary CRC syndrome. We have previously reported a high incidence of microsatellite instability (MSI) and germline mismatch repair (MMR) gene mutations in young Hong Kong Chinese with CRC. Ongoing studies at the Hereditary Gastrointestinal Cancer Registry in Hong Kong have revealed a unique germline MSH2 c.1452-1455delAATG mutation that has not been reported in other ethnic groups. Detailed analysis showed that this specific MSH2 mutation constituted 21% of all germline MMR gene mutations and 36% of all MSH2 germline mutations identified. We designed a specific PCR-based diagnostic test on paraffin-embedded tissues and identified this germline mutation in 2 (1.5%) of 138 consecutive patients with early-onset CRC (<46 years of age at diagnosis). Haplotype analysis was performed using 11 microsatellite markers located between D2S391 and D2S123. All 10 families had the same disease haplotype, suggesting a founder effect. These 10 families all originated from the Chinese province of Guangdong, which historically included Hong Kong. It is the most populous of the Chinese provinces, with a population of >93 million. Further analysis suggested that this founder mutation may date back to between 22 and 103 generations ago. The identification of this MSH2 founder mutation has important implications for the design of mutation-detection strategies for the southern Chinese population. Since there were major emigrations from Hong Kong and Guangdong province during the 19th and 20th centuries, this finding is also significant for Chinese communities worldwide.  相似文献   

5.
Hereditary nonpolyposis colorectal cancer (HNPCC) (Amsterdam criteria) is often caused by mutations in mismatch repair (MMR) genes, and tumors of patients with HNPCC show microsatellite instability (MSI-high phenotype). Germline mutations of MMR genes have rarely been found in families that have HNPCC or suspected HNPCC and that do not show microsatellite instability (MSI-low phenotype). Therefore, an MSI-high phenotype is often used as an inclusion criterion for mutation testing of MMR genes. Correction of base-base mismatches is the major function of MSH6. Since mismatches present with an MSI-low phenotype, we assumed that the phenotype in patients with HNPCC-related tumors might be associated with MSH6 germline mutations. We divided 36 patients with suspected HNPCC into an MSI-low group (n=18) and an MSI-high group (n=18), on the basis of the results of MSI testing. Additionally, three unrelated patients from Amsterdam families with MSI-low tumors were investigated. All patients were screened for MSH2, MLH1, and MSH6 mutations. Four presumably causative MSH6 mutations were detected in the patients (22%) who had suspected HNPCC and MSI-low tumors. Furthermore, we detected one frameshift mutation in one of the three patients with HNPCC and MSI-low tumors. In the MSI-high group, one MSH6 missense mutation was found, but the same patient also had an MLH1 mutation, which may explain the MSI-high phenotype. These results suggest that MSH6 may be involved in a substantial proportion of patients with HNPCC or suspected HNPCC and MSI-low tumors. Our data emphasize that an MSI-low phenotype cannot be considered an exclusion criterion for mutation testing of MMR genes in general.  相似文献   

6.
Lynch syndrome (LS) accounts for 3–5% of all colorectal cancers (CRC) and is inherited in an autosomal dominant fashion. This syndrome is characterized by early CRC onset, high incidence of tumors in the ascending colon, excess of synchronous/metachronous tumors and extra-colonic tumors. Nowadays, LS is regarded of patients who carry deleterious germline mutations in one of the five mismatch repair genes (MMR), mostly in MLH1 and MSH2, but also in MSH6, PMS1 and PMS2. To comprehensively characterize 116 Brazilian patients suspected for LS, we assessed the frequency of germline mutations in the three minor genes MSH6, PMS1 and PMS2 in 82 patients negative for point mutations in MLH1 and MSH2. We also assessed large genomic rearrangements by MLPA for detecting copy number variations (CNVs) in MLH1, MSH2 and MSH6 generating a broad characterization of MMR genes. The complete analysis of the five MMR genes revealed 45 carriers of pathogenic mutations, including 25 in MSH2, 15 in MLH1, four in MSH6 and one in PMS2. Eleven novel pathogenic mutations (6 in MSH2, 4 in MSH6 and one in PMS2), and 11 variants of unknown significance (VUS) were found. Mutations in the MLH1 and MSH2 genes represented 89% of all mutations (40/45), whereas the three MMR genes (MSH6, PMS1 and PMS2) accounted for 11% (5/45). We also investigated the MLH1 p.Leu676Pro VUS located in the PMS2 interaction domain and our results revealed that this variant displayed no defective function in terms of cellular location and heterodimer interaction. Additionally, we assessed the tumor phenotype of a subset of patients and also the frequency of CRC and extra-colonic tumors in 2,365 individuals of the 116 families, generating the first comprehensive portrait of the genetic and clinical aspects of patients suspected of LS in a Brazilian cohort.  相似文献   

7.
Hereditary nonpolyposis colorectal cancer (HNPCC) is due to defects in DNA mismatch repair (MMR) genes MSH2, MLH1, MSH6, and to a lesser extent PMS2. Of 466 suspected HNPCC families, we defined 54 index patients with either tumors of high microsatellite instability (MSI-H) and/or loss of expression for either MLH1, MSH2, and/or MSH6, but without a detectable pathogenic point mutation in these genes. This study cohort was augmented to 64 patients by 10 mutation-negative index patients from Amsterdam families where no tumors were available. Deletion/duplication screening using the multiplex ligation-dependent probe amplification (MLPA) revealed 12 deletions in MSH2 and two deletions in MLH1. These deletions constitute 17% of pathogenic germline alterations but elucidate the susceptibility to HNPCC in only 22% of the mutation-negative study cohort, pointing towards other mutation mechanisms for an inherited inactivation of MLH1 or MSH2. We describe here four novel deletions. One novel and one known type of deletion were found for three and two unrelated families, respectively. MLPA analysis proved a reliable method for the detection of genomic deletions in MLH1 and MSH2; however, sequence variations in the ligation-probe binding site can mimic single exon deletions.  相似文献   

8.
Hereditary non-polyposis colorectal cancer (HNPCC) syndrome is an autosomal, dominantly inherited disease accounting for about 1%–5% of all colorectal cancer cases. HNPCC predisposition is caused by germline mutations in at least five genes coding for DNA mismatch repair (MMR) proteins. More than 400 MMR gene mutations have been identified in HNPCC patients. About 90% of mutations affect the MLH1 and MSH2 genes. The mutational spectrum mainly includes point mutations and small deletions or insertions. Here, we report a large 184 base-pair Alu insertion mutation in exon 6 of the MSH2 gene in a German HNPCC family. The inserted sequence contains repetitive Alu sequence elements that present the highest homology with the old Alu J subfamily. The Alu J insertion was most likely derived from Alu-mediated recombination, since Alu J elements have been found close to the insertion site in adjacent introns, and since elements pivotal for Alu retrotransposition are missing. Our results suggest that the recombination event occurred at least one generation ago. This is the first report of an Alu insertion in the coding sequence of a MMR gene as the cause of HNPCC. Our data thus further extend the spectrum of MMR gene mutations causative for HNPCC.M. Kloor and C. Sutter contributed equally to this work  相似文献   

9.
Kim YM  Choe CG  Cho SK  Jung IH  Chang WY  Cho M 《BMB reports》2010,43(10):693-697
Hereditary non-polyposis colorectal cancer (HNPCC) is an autosomal dominant syndrome characterized by predisposition to early-onset cancers. HNPCC is caused by heterozygous loss-of-function mutations within the mismatch repair genes MLH1, MSH2, MSH6, PMS1, and PMS2. We genotyped the MLH1 and MSH2 genes in patients suffering from Lynch syndrome and in 11 unrelated patients who were diagnosed with colorectal cancer and had subsequently undergone surgery. Five Lynch syndrome patients carried germline mutations in MLH1 or MSH2. Two of these were identified as known mutations in MLH1: deletion of exon 10 and a point mutation (V384D). The remaining three patients exhibited novel mutations: a duplication (937_942dupGAAGTT) in MLH1; deletion of exons 8, 9, and 10; and a point mutation in MLH1 (F396I) combined with multiple missense mutations in MSH2 (D295G, K808E, Q855P, and I884T). The findings underline the importance of efficient pre-screening of conspicuous cases.  相似文献   

10.
Optimal prevention of hereditary cancer is central and requires initiation of surveillance programmes and/or prophylactic measures at a safe age. Anticipation, expressed as an earlier age at onset in successive generations, has been demonstrated in hereditary nonpolyposis colorectal cancer (HNPCC). We specifically addressed anticipation in phenotypic HNPCC families without disease-predisposing mismatch repair (MMR) defects since risk estimates and age at onset are particularly difficult to determine in this cohort. The national Danish HNPCC register was used to identify families who fulfilled the Amsterdam criteria for HNPCC and showed normal MMR function and/or lack of disease-predisposing MMR gene mutation. In total, 319 cancers from 212 parent–child pairs in 99 families were identified. A paired t-test and a bivariate statistical model were used to assess anticipation. Both methods demonstrated an effect from anticipation with cancer diagnosed mean 11.4 years (t-test, p < 0.0001) and mean 5.9 (bivariate model, p = 0.02) years earlier in children than in parents. This observation suggests that anticipation may apply also to families without identified mutations and serves as a reminder to initiate surveillance programmes at young age also in HNPCC families with undefined genetic causes.  相似文献   

11.
Functional analysis of HNPCC-related missense mutations in MSH2   总被引:10,自引:0,他引:10  
Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions.  相似文献   

12.
Biallelic germline mutations of MUTYH—a gene encoding a base excision repair protein—are associated with an increased susceptibility of colorectal cancer. Whether monoallelic MUTYH mutations also increase cancer risk is not yet clear, although there is some evidence suggesting a slight increase of risk. As the MUTYH protein interacts with the mismatch repair (MMR) system, we hypothesised that the combination of a monoallelic MUTYH mutation with an MMR gene mutation increases cancer risk. We therefore investigated the prevalence of monoallelic MUTYH mutations in carriers of a germline MMR mutation: 40 carriers of a truncating mutation (group I) and 36 of a missense mutation (group II). These patients had been diagnosed with either colorectal or endometrial cancer. We compared their MUTYH mutation frequencies with those observed in a group of 134 Dutch colorectal and endometrial cancer patients without an MMR gene mutation (0.7%) and those reported for Caucasian controls (1.5%). In group I one monoallelic MUTYH mutation was found (2.5%). In group II five monoallelic germline MUTYH mutations were found (14%), four of them in MSH6 missense mutation carriers (20%). Of all patients with an MMR gene mutation, only those with a missense mutation showed a significantly higher frequency of (monoallelic) MUTYH mutations than the Dutch cancer patients without MMR gene mutations (P=0.002) and the published controls (P=0.001). These results warrant further study to test the hypothesis of mutations in MMR genes (in particular MSH6) and MUTYH acting together to increase cancer risk.  相似文献   

13.
Hereditary nonpolyposis colorectal cancer (HNPCC) is a dominantly inherited cancer syndrome. Germline mutations in five different mismatch repair (MMR) genes, MSH2, MSH6, MLH1, MLH3, and PMS2 are linked to HNPCC. Here, we describe two colon cancer families in which the index patients carry missense mutations in both MSH2 and MSH6. The MSH2 mutation, I145M, is the same in both families, whereas the MSH6 mutations are different (R1095H and L1354Q). The families do not fulfil the international criteria for HNPCC, one family comprising two and the other family four colon cancer patients, all in one generation, resembling a recessive rather than dominant inheritance characteristic of HNPCC. The tumors of the index patients showed microsatellite instability. Functional analysis was performed to determine which one of the mutations could primarily underlie the cancer susceptibility in the families. MSH2 and MSH6 are known to form a heterodimeric complex (MutSalpha) responsible for mismatch recognition. The interaction of each mutated protein with its wild-type partner and with its mutated partner present in the colon cancer patient, and the MMR function of the mutated MutSalpha complexes were determined. Since none of the three mutations affected the MSH2-MSH6 interaction or the function of MutSalpha in an in-vitro MMR assay, our results suggest that alone the mutations do not cause MMR deficiency typical of HNPCC. However, our results do not exclude the possible compound pathogenicity of the two mutations.  相似文献   

14.
Wei W  Liu F  Liu L  Li Z  Zhang X  Jiang F  Shi Q  Zhou X  Sheng W  Cai S  Li X  Xu Y  Nan P 《BMB reports》2011,44(5):317-322
Hereditary non-polyposis Colorectal Cancer (HNPCC) is an autosomal dominant inheritance syndrome. HNPCC is the most common hereditary variant of colorectal cancer (CRC), which accounts for 2-5% CRCs, mainly due to hMLH1 and hMSH2 mutations that impair DNA repair functions. Our study aimed to identify the patterns of hMSH2 and hMLH1 mutations in Chinese HNPCC patients. Ninety-eight unrelated families from China meeting Amsterdam or Bethesda criteria were included in our study. Germline mutations in MLH1 and MSH2 genes, located in the exons and the splice-site junctions, were screened in the 98 probands by direct sequencing. Eleven mutations were found in ten patients (11%), with six in MLH1 (54.5%) and five in MSH2 (45.5%) genes. One patient had mutations in both MLH1 and MSH2 genes. Three novel mutations in MLH1 gene (c.157_160delGAGG, c.2157dupT and c.-64G>T) were found for the first time, and one suspected hotspot in MSH2 (c.1168C>T) was revealed.  相似文献   

15.
Hereditary nonpolyposis colorectal cancer (HNPCC) is caused by inherited mutations in DNA mismatch-repair genes, most commonly MLH1 or MSH2. The role MSH6 plays in inherited cancer susceptibility is less well defined. The aim of this study was to investigate the penetrance and expressivity of MSH6 mutations in kindreds ascertained through endometrial cancer probands unselected for family history. Detailed pedigrees were constructed for six MSH6 mutation carriers. All reported cancers and precancers were confirmed, and tissues were obtained when available. Tumors were analyzed for microsatellite instability (MSI) and for expression of MSH2, MLH1, and MSH6. MSH6 mutation status was determined for 59 family members. Of these 59 individuals, 19 (32%) had confirmed cancers and precancers. There was an excess of mutation carriers among the 19 affected family members (11 [58%] of 19) compared with those among the 40 unaffecteds (8 [20%] of 40, P=.0065, odds ratio = 5.5, 95% CI = 1.66-18.19). In four of the seven tumors analyzed from mutation carriers other than the probands, MSI and/or MMR protein expression was consistent with the involvement of MSH6. Overall estimated penetrance of the MHS6 mutations was 57.7%. Of the tumors in mutation carriers, 78% were part of the extended HNPCC spectrum. This study demonstrates that MSH6 germline mutations are, indeed, associated with increased cancer risk and that the penetrance of mutations may be higher than appreciated elsewhere. A combination of MSI and immunohistochemistry analyses may be helpful in screening for MSH6 mutation carriers.  相似文献   

16.
Germline mutations in the DNA mismatch repair (MMR) genes MSH2 and MLH1 are responsible for the majority of hereditary non-polyposis colorectal cancer (HNPCC), an autosomal-dominant early-onset cancer syndrome. Genetic testing of both MSH2 and MLH1 from individuals suspected of HNPCC has revealed a considerable number of missense codons, which are difficult to classify as either pathogenic mutations or silent polymorphisms. To identify novel MLH1 missense codons that impair MMR activity, a prospective genetic screen in the yeast Saccharomyces cerevisiae was developed. The screen utilized hybrid human-yeast MLH1 genes that encode proteins having regions of the yeast ATPase domain replaced by homologous regions from the human protein. These hybrid MLH1 proteins are functional in MMR in vivo in yeast. Mutagenized MLH1 fragments of the human coding region were synthesized by error-prone PCR and cloned directly in yeast by in vivo gap repair. The resulting yeast colonies, which constitute a library of hybrid MLH1 gene variants, were initially screened by semi-quantitative in vivo MMR assays. The hybrid MLH1 genes were recovered from yeast clones that exhibited a MMR defect and sequenced to identify alterations in the mutagenized region. This investigation identified 117 missense codons that conferred a 2-fold or greater decreased efficiency of MMR in subsequent quantitative MMR assays. Notably, 10 of the identified missense codons were equivalent to codon changes previously observed in the human population and implicated in HNPCC. To investigate the effect of all possible codon alterations at single residues, a comprehensive mutational analysis of human MLH1 codons 43 (lysine-43) and 44 (serine-44) was performed. Several amino acid replacements at each residue were silent, but the majority of substitutions at lysine-43 (14/19) and serine-44 (18/19) reduced the efficiency of MMR. The assembled data identifies amino acid substitutions that disrupt MLH1 structure and/or function, and should assist the interpretation of MLH1 genetic tests.  相似文献   

17.
The identification of germline mutations in families with HNPCC is hampered by genetic heterogeneity and clinical variability. In previous studies, MSH2 and MLH1 mutations were found in approximately two-thirds of the Amsterdam-criteria-positive families and in much lower percentages of the Amsterdam-criteria-negative families. Therefore, a considerable proportion of HNPCC seems not to be accounted for by the major mismatch repair (MMR) genes. Does the latter result from a lack of sensitivity of mutation detection techniques, or do additional genes underlie the remaining cases? In this study we address these questions by thoroughly investigating a cohort of clinically selected North American families with HNPCC. We analyzed 59 clinically well-defined U.S. families with HNPCC for MSH2, MLH1, and MSH6 mutations. To maximize mutation detection, different techniques were employed, including denaturing gradient gel electrophoresis, Southern analysis, microsatellite instability, immunohistochemistry, and monoallelic expression analysis. In 45 (92%) of the 49 Amsterdam-criteria-positive families and in 7 (70%) of the 10 Amsterdam-criteria-negative families, a mutation was detected in one of the three analyzed MMR genes. Forty-nine mutations were in MSH2 or MLH1, and only three were in MSH6. A considerable proportion (27%) of the mutations were genomic rearrangements (12 in MSH2 and 2 in MLH1). Notably, a deletion encompassing exons 1-6 of MSH2 was detected in seven apparently unrelated families (12% of the total cohort) and was subsequently proven to be a founder. Screening of a second U.S. cohort with HNPCC from Ohio allowed the identification of two additional kindreds with the identical founder deletion. In the present study, we show that optimal mutation detection in HNPCC is achieved by combining accurate and expert clinical selection with an extensive mutation detection strategy. Notably, we identified a common North American deletion in MSH2, accounting for approximately 10% of our cohort. Genealogical, molecular, and haplotype studies showed that this deletion represents a North American founder mutation that could be traced back to the 19th century.  相似文献   

18.
The MSH6 gene is one of the mismatch-repair genes involved in hereditary nonpolyposis colorectal cancer (HNPCC). Three hundred sixteen individuals who were known or suspected to have HNPCC were analyzed for MSH6 germline mutations. For 25 index patients and 8 relatives with MSH6 variants, molecular and clinical features are described. For analysis of microsatellite instability (MSI), the five consensus markers were used. Immunohistochemical analysis of the MLH1, MSH2, and MSH6 proteins was performed. Five truncating MSH6 mutations, of which one was detected seven times, were found in 12 index patients, and 10 MSH6 variants with unknown pathogenicity were found in 13 index patients. Fourteen (54%) of 26 colorectal cancers (CRCs) and endometrial cancers showed no, or only weak, MSI. Twelve of 18 tumors of truncating-mutation carriers and 3 of 17 tumors of missense-mutation carriers showed loss of MSH6 staining. Six of the families that we studied fulfilled the original Amsterdam criteria; most families with MSH6, however, were only suspected to have HNPCC. In families that did not fulfill the revised Amsterdam criteria, the prevalence of MSH6 variants is about the same as the prevalence of those in MLH1/MSH2. Endometrial cancer and/or atypical hyperplasia were diagnosed in 8 of 12 female carriers of MSH6 truncating mutations. Most CRCs were localized distally in the colon. Although, molecularly, missense variants are labeled as doubtfully pathogenic, clinical data disclose a great resemblance between missense-variant carriers and truncating-mutation carriers. We conclude that, in all patients suspected to have HNPCC, MSH6-mutation analysis should be considered. Neither MSI nor immunohistochemistry should be a definitive selection criterion for MSH6-mutation analysis.  相似文献   

19.
The identification of germline variants predisposing to hereditary nonpolyposis colorectal cancer (HNPCC) is crucial for clinical management of carriers, but several probands remain negative for such variants or bear variants of uncertain significance (VUS). Here we describe the results of integrative molecular analyses in 132 HNPCC patients providing evidences for improved genetic testing of HNPCC with traditional or next generation methods. Patients were screened for: germline allele-specific expression (ASE), nucleotide variants, rearrangements and promoter methylation of mismatch repair (MMR) genes; germline EPCAM rearrangements; tumor microsatellite instability (MSI) and immunohistochemical (IHC) MMR protein expression. Probands negative for pathogenic variants of MMR genes were screened for germline APC and MUTYH sequence variants. Most germline defects identified were sequence variants and rearrangements of MMR genes. Remarkably, altered germline ASE of MMR genes was detected in 8/22 (36.5%) probands analyzed, including 3 cases negative at other screenings. Moreover, ASE provided evidence for the pathogenic role and guided the characterization of a VUS shared by 2 additional probands. No germline MMR gene promoter methylation was observed and only one EPCAM rearrangement was detected. In several cases, tumor IHC and MSI diverged from germline screening results. Notably, APC or biallelic MUTYH germline defects were identified in 2/19 probands negative for pathogenic variants of MMR genes. Our results show that ASE complements gDNA-based analyses in the identification of MMR defects and in the characterization of VUS affecting gene expression, increasing the number of germline alterations detected. An appreciable fraction of probands negative for MMR gene variants harbors APC or MUTYH variants. These results indicate that germline ASE analysis and screening for APC and MUTYH defects should be included in HNPCC diagnostic algorithms.  相似文献   

20.
Colorectal cancer (CC) is one of two diseases, in which the link between cancer proneness and DNA repair deficiency appears to be proved. A strict relationship between mismatch repair (MMR) gene mutations, microsatellite instability (MSI) has been found in familiar colorectal cancer (Lynch syndrome). Tumorigenesis at familiar cancer is initiated by biallelic mutations in the major MMR genes, namely MSH2 or MLH1. One of these mutations is an inherited germline alteration and the other is a somatic one. The initiating mutation in sporadic colorectal tumors was not still identified although biochemical and genetic signs of MMR deficiency are observed in tumor cells. Two currently used colorectal tumor cell lines HCT116 and COLO320HSR were derived from hereditary and sporadic tumors accordingly. HCT116 cell line exhibits MMR-deficiency due to biallelic deletion in MLH1. As a consequence this shows MSI phenotype and a near-diploid karyotype. COLO320HSR cell line is characterized by MSS phenotype with mostly imbalanced aberrations. This indicates MMR proficiency in these cells. However, both MMR-deficient HCT116 and COLO320HSR cells reveal near-diploid karyotype. Earlier we have shown that the number of secondary DNA double strand breaks, induced by methylnitrosourea (MNU), represent functional activity of cellular MMR. In the present study, using this approach we evaluated sensitivity to MNU and MMR activity in two colorectal tumor cell lines (HCT116, COLO320HSR) and compared them to that in the HeLa cell line, which have MMR-proficient phenotype. We showed that cell line COLO320HSR exhibits low MMR activity, close to the level of MMR-activity in HCT116 cell line. We found a mutation in MSH2-G520A gene in COLO320HSR. This neutral mutation apparently is not related to polymorphism as we failed to identify the same mutation in any of MSH2 gene sequences of lymphocytes from 30 patients with sporadic colorectal cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号