首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The monoamine transporter of chromaffin granule membrane has two distinct high-affinity binding sites for tetrabenazine and reserpine, which can be assayed by [3H]dihydrotetrabenazine and [3H]reserpine binding, respectively. The functional molecular mass of the components bearing these sites has been investigated by the radiation inactivation technique. The decline of [3H]dihydrotetrabenazine binding activity with increasing radiation doses followed a single exponential, from which a functional molecular mass of 68 kDa was derived for tetrabenazine binding sites. [3H]Reserpine binding activity declined in a more complex way; however, under conditions where high-affinity reserpine binding sites were specifically assayed, the decline was also exponential, corresponding to a functional molecular mass of 37 kDa for these sites. The figures obtained for high-affinity tetrabenazine and reserpine binding sites are consistent with previous values obtained by photoaffinity of tetrabenazine and serotonin binding sites, respectively. It is thus concluded that the monoamine transporter has an oligomeric structure. By the radiation inactivation technique, cytochrome b561 and dopamine beta-hydroxylase have functional molecular masses of 25 and 123 kDa, respectively. The latter value might be attributed to the dimeric form of the enzyme.  相似文献   

2.
M F Isambert  J P Henry 《Biochemistry》1985,24(14):3660-3667
An azido derivative of tetrabenazine, a specific inhibitor of the monoamine carrier of chromaffin granule membranes, has been synthesized. In the dark, this compound, 3H-labeled N-(3-isobutyl-9,10-dimethoxy-1,2,3,4,6,7-hexahydro-11bH-benzo [a]quinolizin-2-yl)-4-[(4-azido-2-nitrophenyl)amino]butanamide+ ++ ([3H]TBA), bound reversibly to purified chromaffin granule membranes. Centrifugation through SP-Sephadex columns was used to separate bound and free [3H]TBA. This technique gave low levels of nonspecific binding and allowed recovery of [3H]TBA-membrane complexes. Scatchard analysis of the data indicated one class of sites with an equilibrium dissociation constant KD of 50 nM and a density of sites of 40-50 pmol/mg of protein, consistent with reported densities of reserpine and dihydrotetrabenazine binding sites. Competition experiments showed that TBA and tetrabenazine bound to the same site. Irradiation at 435 nm of [3H]TBA-membrane mixtures induced some irreversible binding of the probe to membranes. After irreversible binding of TBA, the number of dihydrotetrabenazine binding sites was decreased, indicating that the probe was covalently bound to the monoamine carrier. [3H]TBA-membrane complexes isolated by centrifugation through SP-Sephadex columns were irradiated, and their radioactivity was analyzed by electrophoresis on sodium dodecyl sulfate/polyacrylamide gels. A polypeptide with a molecular weight of 70 000 was labeled. This polypeptide was different from dopamine beta-hydroxylase, and it was not adsorbed on concanavalin A-Sepharose. It is proposed that the monoamine carrier of chromaffin granule membrane has an oligomeric structure, involving a 45K subunit [Gabizon, R., Yetinson, T., & Schuldiner, S. (1982) J. Biol. Chem. 257, 15145] and a 70K subunit.  相似文献   

3.
D Scherman  J P Henry 《Biochimie》1982,64(10):915-921
Tetrabenazine (2-oxo-3-isobutyl-9,10-dimethoxy-1,2,3,4,6,7 hexahydro-11 bH-benzo (a) quinolizine) and dihydrotetrabenazine (2-hydroxy derivative) are inhibitors of catecholamine uptake by the chromaffin granules of adrenal medulla. In the 6.6 - 8.8 pH range, inhibition by tetrabenazine was pH-independent whereas dihydrotetrabenazine efficiency increased up to pH 8.3. The fluorescence and the buffer-octanol partition coefficient of these drugs was affected by the pH. Analysis of the pH-dependency of these effects indicated the existence of an acido-basic transition characterized by a pKa of 6.0 for tetrabenazine and 7.5 for dihydrotetrabenazine and associated with protonation of the tertiary amine of these molecules. For both compounds, the neutral form was less fluorescent and more soluble in octanol. Comparison of the uptake inhibition constants IC50 and of the neutralization curves showed that this form was the biologically active one. This result implies that the monoamine carrier of chromaffin granule membrane binds either to only deprotonated amines or to the molecules present only in the lipidic phase where the neutral form is largely predominant.  相似文献   

4.
The monoamine transporter of dopamine (DA), noradrenaline, and 5-hydroxytryptamine synaptic vesicles was assayed in rat and human brain homogenates by in vitro binding of [3H]dihydrotetrabenazine. [3H]Reserpine, a second ligand of the vesicular monoamine transporter, could not be used. [3H]Dihydrotetrabenazine binding in rat brain was stable after 72 h at 22 degrees C postmortem. In major human brain regions, [3H]dihydrotetrabenazine binding was specific and saturable (KD, 2.7 nM). Displacement constants by substrates or inhibitors of vesicular monoamine uptake, and regional distribution in human brain were similar to those found in rodents. The highest densities of binding sites were observed in caudate nucleus, putamen, and accumbens nucleus. In caudate nucleus and in putamen from normal human subjects, [3H]dihydrotetrabenazine binding and homovanillic acid concentration were significantly or nearly significantly correlated. A weaker correlation was found between [3H]dihydrotetrabenazine binding and DA, in association with a higher variability of DA. [3H]Dihydrotetrabenazine binding in caudate nucleus and in putamen decreased significantly with age, unlike DA and homovanillic acid concentrations. The results establish [3H]dihydrotetrabenazine as a presynaptic monoaminergic ligand of interest for studies on postmortem human brain.  相似文献   

5.
An iodinated azido derivative of ketanserin, 7-azido-8-[125I]iodoketanserin ( [125I]AZIK), has been used to label the monoamine transporter of bovine chromaffin granule membranes by the technique of photoaffinity labeling. In the dark, this derivative was found to bind reversibly to the membranes, with an equilibrium dissociation constant estimated to be 6 nM at 0 degrees C. As for ketanserin, binding occurred at the tetrabenazine site: (i) [125I]AZIK was displaced efficiently from its binding site by tetrabenazine, ketanserin, and 7-azidoketanserin, whereas serotonin, which is a substrate for the transporter but has a low affinity for tetrabenazine binding site, was a poor displacer; pipamperone and pyrilamine, two antagonists of respectively serotonin S2 and histamine H1 receptors, were inactive. (ii) 7-Azidoketanserin was a competitive inhibitor of [3H]dihydrotetrabenazine binding, and it inhibited the ATP-dependent uptake of serotonin by chromaffin granule ghosts. Irradiation of [125I]AZIK with long-wavelength UV light, followed by electrophoresis on sodium dodecyl sulfate/polyacrylamide gels and autoradiography, revealed irreversible labeling of a membrane component with an apparent molecular weight of 73,000. Tetrabenazine inhibited the labeling of this 73-kDa band in a manner parallel to the binding of [125I]AZIK in the dark. Such a labeling is totally compatible with previous results obtained through photolabeling with a tetrabenazine derivative or by target size analysis. Moreover, preliminary experiments showed that [125I]AZIK can label the tetrabenazine binding sites of various sources including rat striatum, rabbit platelets, human pheochromocytoma, and human adrenal medulla. Therefore, this molecule appears to be an excellent probe to label the monoamine transporter of different amine storage vesicles even without purification.  相似文献   

6.
Dicyclohexylcarbodiimide (DCCD), a hydrophobic carboxyl reagent, inhibited Ca2+ release from Ca2+-loaded sarcoplasmic reticulum vesicles, induced by elevated pH, tetraphenylboron, ATP + Pi, or membrane modification with acetic anhydride. Under the conditions used, the same concentrations of DCCD were required for inhibition of Ca2+ release, Ca2+-ATPase activity, and Ca2+ uptake. On the other hand, free Ca2+ or alkaline pH prevented the inhibition by DCCD of Ca2+-ATPase and coupled Ca2+ transport but not that of Ca2+ release. Moreover, several hydrophilic carboxyl reagents inhibited Ca2+-ATPase but not Ca2+ release. We suggest that a carboxyl residue(s), located in a hydrophobic region of a protein(s), is involved in the control of Ca2+ release, where DCCD interaction with this group blocks Ca2+ release. This group is distinct from the one involved in the inhibition of Ca2+-ATPase. DCCD also inhibited [3H]ryanodine binding to junctional sarcoplasmic reticulum membranes. The presence of Ca2+ or an alkaline pH only slightly affects the degree of inhibition of ryanodine binding by DCCD. Incubation of the membranes with [14C]DCCD resulted in labeling of 350-, 170-, 140-, 53-, and 30-kDa proteins in addition to the Ca2+-ATPase. The involvement of one or all of the DCCD-labeled proteins in Ca2+ release and ryanodine binding is discussed.  相似文献   

7.
The vesicle monoamine transporter (VMAT2) concentrates monoamine neurotransmitter into synaptic vesicles. Photoaffinity labeling, chimera analysis, and mutagenesis have identified functionally important amino acids and provided some information regarding structure and ligand binding sites. To extend these studies, we engineered functional human VMAT2 constructs with reduced numbers of cysteines. Subsets of cysteines were discovered, which restore function to an inactive cysteine-less human VMAT2. Replacement of three transmembrane (TM) cysteines together (net removal/replacement of three atoms) significantly enhanced monoamine transport. Cysteine modification studies involving single and combination cysteine mutants with methanethiosulfonate ethylamine revealed that [(3)H]dihydrotetrabenazine binding is > 90% inhibited by modification of two sets of cysteines. The primary target (responsible for approximately 80% of inhibition) is Cys(439) in TM 11. The secondary target (responsible for approximately 20% of inhibition) is one or more of the four non-TM cysteines. [(3)H]Dihydrotetrabenazine protects against modification of Cys(439) by a 10,000-fold molar excess of methanethiosulfonate ethylamine, demonstrating that Cys(439) is either at the tetrabenazine binding site, or conformationally linked to tetrabenazine binding. Supporting a direct effect, the position of tetrabenazine-protectable Cys 439 is consistent with previous mutagenesis, chimera, and photoaffinity labeling data, demonstrating involvement of TM 10-12 in a tetrabenazine binding domain.  相似文献   

8.
Inhibition of vesicular uptake of monoamines by hyperforin   总被引:5,自引:0,他引:5  
Roz N  Mazur Y  Hirshfeld A  Rehavi M 《Life sciences》2002,71(19):2227-2237
Hyperforin is the major active ingredient of Hypericum perforatum (St John's Wort), a traditional antidepressant medication. This study evaluated its inhibitory effects on the synaptic uptake of monoamines in rat forebrain homogenates, comparing the nature of the inhibition at synaptic and vesicular monoamine transporters. A hyperforin-rich extract inhibited with equal potencies the sodium-dependent uptake of the monoamine neurotransmitters serotonin [5-HT], dopamine [DA] and norepinephrine [NE] into rat brain synaptosomes. Hyperforin inhibited the uptake of all three monoamines noncompetitively, in marked contrast with the competitive inhibition exerted by fluoxetine, GBR12909 or desipramine on the uptake of these monoamines. Hyperforin had no inhibitory effect on the binding of [3H]paroxetine, [3H]GBR12935 and [3H]nisoxetine to membrane presynaptic transporters for 5-HT, DA and NE, respectively. The apparent presynaptic inhibition of monoamine uptake could reflect a "reserpine-like mechanism" by which hyperforin induced release of neurotransmitters from synaptic vesicles into the cytoplasm. Thus, we assessed the effects of hyperforin on the vesicular monoamine transporter. Hyperforin inhibited with equal potencies the uptake of the three tritiated monoamines to rat brain synaptic vesicles. Similarly to the synaptosomal uptake, the vesicular uptake was also noncompetitively inhibited by hyperforin. Notably, hyperforin did not affect the direct binding on [3H]dihydrotetrabenazine, a selective vesicular monoamine transporter ligand, to rat forebrain membranes. Our results support the notion that hyperforin interferes with the storage of monoamines in synaptic vesicles, rather than being a selective inhibitor of either synaptic membrane or vesicular monoamine transporters.  相似文献   

9.
The relationship between the magnitude of the transmembrane electrical potential and the uptake of [14C]gentamicin was examined in wild-type Staphylococcus aureus in the logarithmic phase of growth. The electrical potential (delta psi) and the pH gradient across the cell membrane were determined by measuring the equilibrium distribution of [3H]tetraphenyl-phosphonium and [14C]acetylsalicylic acid, respectively. Incubation in the presence of the H+-ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) led to an increase in delta psi with no measurable effect on the pH gradient at external pHs ranging from 5.0 to 6.5, and the effect on delta psi was DCCD concentration dependent. In separate experiments, gentamicin uptake and killing were studied in the same cells under identical conditions. At pH 5.0 (delta psi = -140 mV), no gentamicin uptake occurred. In the presence of 40 and 100 microM DCCD, delta psi was increased to -162 and -184 mV, respectively, and gentamicin uptake was observed in a manner that was also dependent on the DCCD concentration. At pH 6.0 (delta psi = -164 mV), gentamicin uptake occurred in the absence of the carbodiimide but was enhanced in a concentration-dependent fashion by 40 and 100 microM DCCD (delta psi = -174 and -216 mV, respectively). In all cases increased gentamicin uptake was associated with an enhanced bactericidal effect. The results indicate that initiation of gentamicin uptake requires a threshold level of delta psi (-155 mV) and that above this level drug uptake is directly dependent on the magnitude of delta psi.  相似文献   

10.
Action of DCCD on the H+/O stoichiometry of mitoplast cytochrome c oxidase   总被引:1,自引:0,他引:1  
The mechanistic H+/O ejection stoichiometry of the cytochrome c oxidase reaction in rat liver mitoplasts is close to 4 at level flow when the reduced oxidase is pulsed with O2. Dicyclohexylcarbodiimide (DCCD) up to 30 nmol/mg protein fails to influence the rate of electron flow through the mitoplast oxidase, but inhibits H+ ejection. The inhibition of H+ ejection appears to be biphasic; ejection of 2-3 H+ per O is completely inhibited by very low DCCD, whereas inhibition of the remaining H+ ejection requires very much higher concentrations of DCCD. This effect suggests the occurrence of two types of H+ pumps in the native cytochrome oxidase of mitoplasts.  相似文献   

11.
We have measured the inhibitory potencies of local anesthetics (procaine, lidocaine, tetracaine and dibucaine) on ATP-mediated H+-translocation, Ca2+-transport and ATPase activity in membrane vesicles from Mycobacterium phlei. Procaine and lidocaine up to 1 mM concentration did not inhibit ATP-dependent H+-translocation, Ca2+-transport and ATPase activity. However, tetracaine and dibucaine at 0.2 mM concentration caused dissipation of the proton gradient, measured by the reversal of the quenching of fluorescence of quinacrine, and inhibition of active Ca2+-transport. Tetracaine (1 mM) inhibited membrane-bound ATPase activity without affecting solubilized F1-ATPase activity. Studies show that these local anesthetics do not prevent the inactivation of F0-F1 ATPase by dicyclohexylcarbodiimide (DCCD). Binding of [14C]DCCD to F0-proteolipid component remained unchanged in the presence of tetracaine indicating that DCCD and tetracaine do not share common binding sites on the F0-proteolipid sector. The inhibition of H+-translocation and membrane-bound ATPase activity by tetracaine was substantially additive in the presence of vanadate.  相似文献   

12.
A covalently binding label for muscarinic acetylcholine receptors, propylbenzilylcholine mustard (PrBCM), irreversibly inhibits the Na+/H+ exchanger in rat renal brush-border membrane vesicles. Substrates of the antiporter, Na+ and Li+, as well as inhibitors, amiloride, 5-(N-ethyl-N-isopropyl)amiloride (EIPA) and propranolol, protect the antiporter from inactivation by PrBCM. With [3H]PrBCM a band with an app. Mr of 65 kDa is predominantly labeled. Amiloride protects this band from labeling with [3H]PrBCM and [14C]-N,N'-dicyclohexylcarbodiimide (DCCD) proving its identity with the renal Na+/H+ exchanger. Our data reveal a specific interaction of PrBCM with the Na+/H+ exchanger and suggest structural relations between antiporter and receptors.  相似文献   

13.
(R)‐3‐[2,6‐cis‐Di(4‐methoxyphenethyl)piperidin‐1‐yl]propane‐1,2‐diol (GZ‐793A) inhibits methamphetamine‐evoked dopamine release from striatal slices and methamphetamine self‐administration in rats. GZ‐793A potently and selectively inhibits dopamine uptake at the vesicular monoamine transporter‐2 (VMAT2). This study determined GZ‐793A's ability to evoke [3H]dopamine release and inhibit methamphetamine‐evoked [3H]dopamine release from isolated striatal synaptic vesicles. Results show GZ‐793A concentration‐dependent [3H]dopamine release; nonlinear regression revealed a two‐site model of interaction with VMAT2 (High‐ and Low‐EC50 = 15.5 nM and 29.3 μM, respectively). Tetrabenazine and reserpine completely inhibited GZ‐793A‐evoked [3H]dopamine release, however, only at the High‐affinity site. Low concentrations of GZ‐793A that interact with the extravesicular dopamine uptake site and the High‐affinity intravesicular DA release site also inhibited methamphetamine‐evoked [3H]dopamine release from synaptic vesicles. A rightward shift in the methamphetamine concentration‐response was evident with increasing concentrations of GZ‐793A, and the Schild regression slope was 0.49 ± 0.08, consistent with surmountable allosteric inhibition. These results support a hypothetical model of GZ‐793A interaction at more than one site on the VMAT2 protein, which explains its potent inhibition of dopamine uptake, dopamine release via a High‐affinity tetrabenazine‐ and reserpine‐sensitive site, dopamine release via a Low‐affinity tetrabenazine‐ and reserpine‐insensitive site, and a low‐affinity interaction with the dihydrotetrabenazine binding site on VMAT2. GZ‐793A inhibition of the effects of methamphetamine supports its potential as a therapeutic agent for the treatment of methamphetamine abuse.

  相似文献   


14.
J S Jung  Y K Kim    S H Lee 《The Biochemical journal》1989,259(2):377-383
Transport of [14C]tetraethylammonium (TEA), an organic cation, was studied in brush-border (BBMV) and basolateral (BLMV) membrane vesicles isolated from rabbit kidney cortex. In BBMV, the presence of an outwardly directed H+ gradient induced a marked stimulation of TEA uptake against its concentration gradient (overshoot phenomenon), whereas a valinomycin-induced inside-negative potential had no effect on TEA uptake. In BLMV, TEA uptake was significantly stimulated by the presence of an outwardly directed H+ gradient and by an inside-negative potential, but the effect of H+ gradient was absent when the vesicles were chemically 'voltage clamped'. In BBMV, internal H+ stimulated TEA uptake in a non-competitive manner by binding at a site with apparent pKa of 6.87. External H+ inhibited TEA uptake through a direct interaction with the putative H+/organic-cation exchanger at a site with apparent pKa of 6.78. Changing external pH while maintaining the pH gradient constant produced a result similar to that obtained by changing external pH alone. Increasing external H+ showed a mixed-type inhibition of TEA uptake. These results suggest that in the rabbit TEA transport across the basolateral membranes is driven by an inside-negative potential and that transport across the brush-border membrane is driven by a H+ gradient via an electroneutral H+/TEA antiport system.  相似文献   

15.
Interaction of N,N'-dicyclohexylcarbodiimide (DCCD) with ATPase of Mycobacterium phlei membranes results in inactivation of ATPase activity. The rate of inactivation of ATPase was pseudo-first order for the initial 30-65% inactivation over a concentration range of 5-50 microM DCCD. The second-order rate constant of the DCCD-ATPase interaction was k = 8.5 X 10(5) M-1 X min(-1). The correlation between the initial binding of [14C]DCCD and 100% inactivation of ATPase activity shows 1.57 nmol DCCD bound per mg membrane protein. The proteolipid subunit of the F0F1-ATPase complex in membranes of M. phlei with which DCCD covalently reacts to inhibit ATPase was isolated by labeling with [14C]DCCD. The proteolipid was purified from the membrane in free and DCCD-modified form by extraction with chloroform/methanol and subsequent chromatography on Sephadex LH-20. The polypeptide was homogeneous on SDS-acrylamide gel electrophoresis and has an apparent molecular weight of 8000. The purified proteolipid contains phosphatidylinositol (67%), phosphatidylethanolamine (18%) and cardiolipin (8%). Amino acid analysis indicates that glycine, alanine and leucine were present in elevated amounts, resulting in a polarity of 27%. Cysteine and tryptophan were lacking. Butanol-extracted proteolipid mediated the translocation of protons across the bilayer, in K+-loaded reconstituted liposomes, in response to a membrane potential difference induced by valinomycin. The proton translocation was inhibited by DCCD, as measured by the quenching of fluorescence of 9-aminoacridine. Studies show that vanadate inhibits the proton gradient driven by ATP hydrolysis in membrane vesicles of M. phlei by interacting with the proteolipid subunit sector of the F0F1-ATPase complex.  相似文献   

16.
D C Phelps  Y Hatefi 《Biochemistry》1984,23(26):6340-6344
N,N'-Dicyclohexylcarbodiimide (DCCD) inhibits the mitochondrial energy-linked nicotinamidenucleotide transhydrogenase (TH). Our studies [Phelps, D.C., & Hatefi, Y. (1981) J. Biol. Chem. 256, 8217-8221; Phelps, D.C., & Hatefi, Y. (1984) Biochemistry 23, 4475-4480] suggested that the inhibition site of DCCD is near the NAD(H) binding site, because NAD(H) and competitive inhibitors protected TH against inhibition by DCCD and, unlike the unmodified TH, the DCCD-modified TH did not bind to NAD-agarose. Others [Pennington, R.M., & Fisher, R.R. (1981) J. Biol. Chem. 256, 8963-8969] could not demonstrate protection by NADH, obtained data indicating DCCD inhibits proton translocation by TH much more than hydride ion transfer from NADPH to 3-acetylpyridine adenine dinucleotide (AcPyAD), and concluded that DCCD modifies an essential residue in the proton channel of TH. The present studies show that N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ) also inhibits TH. The inhibition is pseudo first order at several EEDQ concentrations, and the reaction order with respect to [EEDQ] is unity, suggesting that inhibition involves the interaction of one molecule of EEDQ with one active unit of TH. The EEDQ-modified TH reacts covalently with [3H]aniline, suggesting that the residue modified by EEDQ is a carboxyl group. More significantly, it has been shown that the absorbance change of oxonol VI at 630 minus 603 nm is a reliable reporter of TH-induced membrane potential formation in submitochondrial particles and that TH-catalyzed hydride ion transfer from NADPH to AcPyAD and the membrane potential induced by this reaction are inhibited in parallel by either DCCD or EEDQ.  相似文献   

17.
The primary effect of dicyclohexylcarbodiimide (DCCD) at the cytochrome b-c1 region of the respiratory chain of rat liver mitochondria is an inhibition of proton translocation. No significant decrease was observed in the rate of electron flow from succinate to cytochrome c when measured as cytochrome c reductase, K3Fe(CN)6 reductase, or the rate of H+ release in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone after treatment with sufficient DCCD to abolish completely electrogenic proton ejection. The inhibitory effects of DCCD were time and concentration dependent and affected by the pH of the medium. Lowering the pH from 7.3 to 6.7 resulted in a progressively faster rate and extent of inhibition of proton ejection by DCCD. At pH 6.9, the H+/2e- decreased by 50% within 30 s after DCCD addition; however, at pH 7.3, a 50% decrease was not observed until 2 min after DCCD addition. DCCD did not act as an uncoupler as both the rate of proton ejection and back decay were decreased after incubation with DCCD. Treatment of rat liver mitochondria with DCCD under these same conditions also resulted in a broadening of the sharp spectral shift of cytochrome b observed after antimycin addition to mitochondria previously reduced with succinate suggesting that DCCD may modify cytochrome b in such a way that the binding of antimycin is altered.  相似文献   

18.
The inactivation of rat renal brush border membrane Na+-H+ exchange by the covalent carboxylate reagent N,N'-dicyclohexylcarbodiimide (DCCD) was studied by measuring 1 mM Na+ influx in the presence of a pH gradient (pHi = 5.5; pHo = 7.5) and H+ influx in the presence of a Na+ or Li+ gradient ([Na+]i = 150 mM; [Na+]o = 1.5 mM). In the presence of DCCD, the rate of Na+ uptake decreased exponentially with time and transport inhibition was irreversible. At all DCCD concentrations the loss of activity was described by a single exponential, consistent with one critical DCCD-reactive residue within the Na+-H+ exchanger. Among several carbodiimides the most hydrophobic carbodiimide, DCCD, was also the most effective inhibitor of Na+-H+ exchange. With 40 nmol of DCCD/mg of protein, at 20 degrees C for 30 min, 75% of the amiloride-sensitive 1 mM Na+ uptake was inhibited. Neither the equilibrium Na+ content nor the amiloride-insensitive Na+ uptake was significantly altered by the treatment. The Na+-dependent H+ flux, measured by the change in acridine orange absorbance, was also decreased 80% by the same DCCD treatment. If 150 mM NaCl, 150 mM LiCl, or 1 mM amiloride was present during incubation of the brush border membranes with 40 nmol of DCCD/mg of protein, then Li+-dependent H+ flux was protected 50, 100, or 100%, respectively, compared to membranes treated with DCCD in the absence of Na+-H+ exchanger substrates. The combination of DCCD and an exogenous nucleophile, e.g. ethylenediamine and glycine methyl ester, increased Na+-dependent H+ flux in the presence of 80 nmol of DCCD/mg of protein, compared to the transport after DCCD treatment alone. These findings suggest that the Na+-H+ exchanger contains a single carboxylate residue in a hydrophobic region of the protein, and the carboxylate and/or a nearby endogenous nucleophilic group is critical for exchange activity.  相似文献   

19.
A vesicle monoamine transporter was functionally identified, molecularly cloned, and characterized from a human substantia nigra cDNA library. The ATP-dependent transport of 5-[3H]hydroxytryptamine ([3H]5-HT) by digitonin-permeabilized fibroblasts expressing the vesicle monoamine/H± antiporter in culture exhibited a Km of 0.55 μM. Reserpine and tetrabenazine, inhibitors of two monoamine binding sites, effectively blocked [3H]5-HT accumulation with K1 values of 34 and 78 nM, respectively. Pretreatment of cells with as little as 10 nM reserpine in the presence of ATP abolished uptake. The rank order for substrate inhibition of [3H]5-HT uptake for both the previously reported rat vMAT1 and the human transporter clone followed the order 5-HT > dopamine > epinephrine > norepinephrine > 1 -methyl-4-phen- ylpyridinium > 2-phenylethylamine > histamine. The virtually identical transport characteristics of rvMATI and hvMAT1 confirm the relevance of neuropharmacological studies of rat brain biogenic amine uptake and storage to human brain neurochemistry.  相似文献   

20.
J Toner-Webb  S S Taylor 《Biochemistry》1987,26(23):7371-7378
The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) has been shown to inhibit the catalytic (C) subunit of adenosine cyclic 3',5'-phosphate dependent protein kinase (EC 2.7.1.3) in a time-dependent, irreversible manner. The rate of inactivation was first order and showed saturation kinetics with an apparent Ki of 60 microM. Magnesium adenosine 5'-triphosphate (MgATP) was capable of protecting against this inhibition, whereas neither a synthetic peptide substrate nor histone afforded protection. Mg alone afforded some protection. When the catalytic subunit was aggregated with the regulatory subunit in the holoenzyme complex, no inhibition was observed. The inhibition was enhanced at low pH, suggesting that a carboxylic acid group was the target for interaction with DCCD. On the basis of the protection studies, it is most likely that this carboxylic acid group is associated with the MgATP binding site, perhaps serving as a ligand for the metal. Efforts to identify the site that was modified by DCCD included (1) modification with [14C]DCCD, (2) modification by DCCD in the presence of [3H]aniline, and (3) modification with DCCD and [14C]glycine ethyl ester. In no case was radioactivity incorporated into the protein, suggesting that the irreversible inhibition was due to an intramolecular cross-link between a reactive carboxylic acid group and a nearby amino group. Differential peptide mapping identified a single peptide that was consistently lost as a consequence of DCCD inhibition. This peptide (residues 166-189) contained four carboxylic acid residues as well as an internal Lys.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号