首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
D Parks  R Bolinger    K Mann 《Nucleic acids research》1997,25(6):1289-1295
Redox modulation of wild-type p53 plays a role in sequence-specific DNA binding in vitro . Reduction produces a DNA-binding form of the protein while oxidation produces a non-DNA-binding form. Primer extension analysis reveals that increasing concentrations of reduced p53 result in enhanced protection of the consensus sequence, while increasing concentrations of oxidized p53 confer minimal protection of the consensus sequence. DNA binding by oxidized p53 is, therefore, not sequence-specific. In contrast, there is no observable difference in the binding of oxidized p53 and reduced p53 to double-stranded non-specific or mismatched DNA in gel mobility shift assays. Both forms of p53 bind equally well, suggesting that redox modulation of p53 does not play a role in its binding to non-specific or mismatched DNA. In view of the in vitro evidence that redox state influences the sequence-specific DNA-binding of p53, we have examined the effect of oxidative stress on the in vivo ability of p53 to bind to and transactivate PG13-CAT, a reporter construct containing multiple copies of the p53 consensus binding site linked to the chloramphenicol acetyltransferase gene. Hydrogen peroxide treatment of cells cotransfected with p53 results in a marked decrease in CAT activity, suggesting that oxidation of p53 decreases the ability of the protein to bind to consensus DNA and transactivate target genes in vivo.  相似文献   

3.
4.
5.
6.
Thioredoxin-dependent redox regulation of p53-mediated p21 activation   总被引:18,自引:0,他引:18  
Thioredoxin (TRX) is a dithiol-reducing enzyme that is induced by various oxidative stresses. TRX regulates the activity of DNA-binding proteins, including Jun/Fos and nuclear factor-kappaB. TRX also interacts with an intranuclear reducing molecule redox factor 1 (Ref-1), which enhances the activity of Jun/Fos. Here, we have investigated the role of TRX in the regulation of p53 activity. Electrophoretic mobility shift assay showed that TRX augmented the DNA binding activity of p53 and also further potentiated Ref-1-enhanced p53 activity. Luciferase assay revealed that transfection of TRX enhanced p53-dependent expression of p21 and further intensified Ref-1-mediated p53 activation. Furthermore, Western blot analysis revealed that p53-dependent induction of p21 protein was also facilitated by transfection with TRX. Overexpression of transdominant negative mutant TRX (mTRX) suppressed the effects of TRX or Ref-1, showing a functional interaction between TRX and Ref-1. cis-Diamminedichloroplatinum (II) (CDDP) induced p53 activation and p21 transactivation. The p53-dependent p21 transactivation induced by CDDP was inhibited by mTRX overexpression, suggesting that TRX-dependent redox regulation is physiologically involved in p53 regulation. CDDP also stimulated translocation of TRX from the cytosol into the nucleus. Hence, TRX-dependent redox regulation of p53 activity indicates coupling of the oxidative stress response and p53-dependent repair mechanism.  相似文献   

7.
8.
9.
10.
11.
12.
13.
In the present study we present evidence for the critical role of Sp1 in the mechanism of transactivation of the human cell cycle inhibitor p21(WAF1/Cip1) (p21) gene promoter by the tumor suppressor p53 protein. We found that the distal p53-binding site of the p21 promoter acts as an enhancer on the homologous or heterologous promoters in hepatoma HepG2 cells. In transfection experiments, p53 transactivated the p21 promoter in HaCaT cells that express Sp1 but have a mutated p53 form. In contrast, p53 could not transactivate the p21 promoter in the Drosophila embryo-derived Schneider's SL2 cells that lack endogenous Sp1 or related factors. Cotransfection of SL2 cells with p53 and Sp1 resulted in a synergistic transactivation of the p21 promoter. Synergistic transactivation was greatly decreased in SL2 cells and HaCaT cells by mutations in either the p53-binding site or in the -82/-77 Sp1-binding site indicating functional cooperation between Sp1 and p53 in the transactivation of the p21 promoter. Synergistic transactivation was also decreased by mutations in the transactivation domain of p53. Physical interactions between Sp1 and p53 proteins were established by glutathione S-transferase pull-down and coimmunoprecipitation assays. By using deletion mutants we found that the DNA binding domain of Sp1 is required for its physical interaction with p53. In conclusion, Sp1 must play a critical role in regulating important biological processes controlled by p53 via p21 gene activation such as DNA repair, cell growth, differentiation, and apoptosis.  相似文献   

14.
Many types of DNA damage induce a cellular response that inhibits replication but allows repair by up-regulating the p53 pathway and inducing p21(Cip1, Waf1, Sdi1). The p21 regulatory protein can bind proliferating cell nuclear antigen (PCNA) and prohibit DNA replication. We show here that p21 also inhibits PCNA stimulation of long patch base excision repair (BER) in vitro. p21 disrupts PCNA-directed stimulation of flap endonuclease 1 (FEN1), DNA ligase I, and DNA polymerase delta. The dilemma is to understand how p21 prevents DNA replication but allows BER in vivo. Differential regulation by p21 is likely to relate to the utilization of DNA polymerase beta, which is not sensitive to p21, in the repair pathway. We have also found that apurinic/apyrimidinic endonuclease 1 (APE1) stimulates long patch BER. Furthermore, neither APE1 activity nor its ability to stimulate long patch BER is significantly affected by p21 in vitro. We propose that APE1 serves as an assembly and coordination factor for long patch BER proteins. APE1 initially cleaves the DNA and then facilitates the sequential binding and catalysis by DNA polymerase beta, DNA polymerase delta, FEN1, and DNA ligase I. This model implies that BER can be regulated differentially, based upon the assembly of relevant proteins around APE1 in the presence or absence of PCNA.  相似文献   

15.
16.
17.
The myogenic protein MyoD requires two nuclear histone acetyltransferases, CREB-binding protein (CBP)/p300 and PCAF, to transactivate muscle promoters. MyoD is acetylated by PCAF in vitro, which seems to increase its affinity for DNA. We here show that MyoD is constitutively acetylated in muscle cells. In vitro, MyoD is acetylated both by CBP/p300 and by PCAF on two lysines located at the boundary of the DNA binding domain. MyoD acetylation by CBP/p300 (as well as by PCAF) increases its activity on a muscle-specific promoter, as assessed by microinjection experiments. MyoD mutants that cannot be acetylated in vitro are not activated in the functional assay. Our results provide direct evidence that MyoD acetylation functionally activates the protein and show that both PCAF and CBP/p300 are candidate enzymes for MyoD acetylation in vivo.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号