首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Objectives:To explore the role and mechanism of miR-125a-3p in rheumatoid arthritis (RA) progression.Methods:The RA-tissues and fibroblast-like synovial cells in rheumatoid arthritis (RA-FLS) were used in this study. qRT-PCR, western blot and ELISA assay were performed to detect the expression levels of IL-6, IL-β and ΤΝF-α. Dual-luciferase reporter gene assay was used to observe the binding effect of miR-125a-3p and MAST3, and CCK-8 was used to observe the effect of miR-125a-3p on the proliferation of RA-FLS.Results:miR-125a-3p was significantly downregulated in the RA-tissues and RA-FLS, and miR-125a-3p could inhibit the proliferation and reduce the inflammation response of RA-FLS. Besides, MAST3 was found as a target of miR-125a-3p, and increased MAST3 could reverse the effects of miR-125a-3p on RA-FLS including decreased proliferation, reduced inflammation level and the inactivation of Wnt/β-catenin and NF-κB pathways.Conclusions:This study suggests that miR-125a-3p could inactivate the Wnt/β-catenin and NF-κB pathways to reduce the proliferation and inflammation response of RA-FLS via targeting MAST3.  相似文献   

3.
Purpose: Our previous data indicated that miR-24-3p is involved in the regulation of vascular endothelial cell (EC) proliferation and migration/invasion. However, whether IL-1β affects hypoxic HUVECs by miR-24-3p is still unclear. Therefore, the present study aimed to investigate the role and underlying mechanism of interleukin 1β (IL-1β) in hypoxic HUVECs.Methods: We assessed the mRNA expression levels of miR-24-3p, hypoxia-inducible factor-1α (HIF1A) and NF-κB-activating protein (NKAP) by quantitative real-time polymerase chain reaction (RT-qPCR). ELISA measured the expression level of IL-1β. Cell counting kit-8 (CCK-8) assays evaluated the effect of miR-24-3p or si-NKAP+miR-24 on cell proliferation (with or without IL-1β). Transwell migration and invasion assays were used to examine the effects of miR-24-3p or si-NKAP+miR-24-3p on cell migration and invasion (with or without IL-1β). Luciferase reporter assays were used to identify the target of miR-24-3p.Results: We demonstrated that in acute myocardial infarction (AMI) patient blood samples, the expression of miR-24-3p is down-regulated, the expression of IL-1β or NKAP is up-regulated, and IL-1β or NKAP is negatively correlated with miR-24-3p. Furthermore, IL-1β promotes hypoxic HUVECs proliferation by down-regulating miR-24-3p. In addition, IL-1β also significantly promotes the migration and invasion of hypoxic HUVECs; overexpression of miR-24-3p can partially rescue hypoxic HUVECs migration and invasion. Furthermore, we discovered that NKAP is a novel target of miR-24-3p in hypoxic HUVECs. Moreover, both the overexpression of miR-24-3p and the suppression of NKAP can inhibit the NF-κB/pro-IL-1β signaling pathway. However, IL-1β mediates suppression of miR-24-3p activity, leading to activation of the NKAP/NF-κB pathway. In conclusion, our results reveal a new function of IL-1β in suppressing miR-24-3p up-regulation of the NKAP/NF-κB pathway.  相似文献   

4.
Objective:In bone tissue engineering, the use of osteoblastic seed cells has been widely adopted to mediate the osteogenic differentiation so as to prompt bone regeneration and repair. It is hypothesized that Dok5 can regulate the proliferation and differentiation of osteoblasts. In this study, the role of Dok5 in osteoblast proliferation and differentiation was investigated.Methods:A lentiviral vector to silence Dok5 was transferred to C3H10, 293T and C2C12 cells. CCK-8 assay was used to detect the cell proliferation. Cells were stained by ALP and AR-S staining. Western blot and RT-PCR were used to detect the expression levels of related factors.Results:Dok5 expression level was gradually up-regulated during the osteoblast differentiation. Dok5 silencing down-regulated the expression levels of osteogenic biosignatures OPN, OCN, and Runx2 and suppressed the osteogenesis. Additionally, the osteoblast proliferation and canonical Wnt/β-catenin signaling were suppressed upon Dok5 knockdown, β-catenin expression level was significantly down-regulated in the knockdown group, while the expression levels of GSK3-β and Axin, negative regulators in the Wnt signaling pathway, were up-regulated. Furthermore, overexpression of Dok5 promoted the proliferation and osteogenesis and activated the canonical Wnt/β-catenin signaling pathway.Conclusion:Dok5 may regulate the osteogenic proliferation and differentiation via the canonical Wnt/β-catenin signaling pathway.  相似文献   

5.
Rationale: The malignant phenotypes of glioblastomas (GBMs) are primarily attributed to glioma stem cells (GSCs). Our previous study and other reports have suggested that both miR-139 and its host gene PDE2A are putative antitumor genes in various cancers. The aim of this study was to investigate the roles and mechanisms of miR-139/PDE2A in GSC modulation.Methods: Clinical samples were used to determine miR-139/PDE2A expression. Patient-derived glioma stem-like cells (PD-GSCs) were stimulated for immunofluorescent staining, sphere formation assays and orthotopic GBM xenograft models. Bioinformatic analysis and further in vitro experiments demonstrated the downstream molecular mechanisms of miR-139 and PDE2A. OX26/CTX-conjugated PEGylated liposome (OCP) was constructed to deliver miR-139 or PDE2A into glioma tissue specifically.Results: We demonstrated that miR-139 was concomitantly transcribed with its host gene PDE2A. Both PDE2A and miR-139 indicated better prognosis of gliomas and were inversely correlated with GSC stemness. PDE2A or miR-139 overexpression suppressed the stemness of PD-GSCs. FZD3 and β-catenin, which induced Wnt/β-catenin signaling activation, were identified as targets of miR-139 and mediated the effects of miR-139 on GSCs. Meanwhile, PDE2A suppressed Wnt/β-catenin signaling by inhibiting cAMP accumulation and GSK-3β phosphorylation, thereby modulating the self-renewal of PD-GSCs. Notably, Notch1, which is also a target of miR-139, suppressed PDE2A/miR-139 expression directly via downstream Hes1, indicating that miR-139 promoted its own expression by the miR-139-Notch1/Hes1 feedback circuit. Expectedly, targeted overexpression miR-139 or PDE2A in glioma with OCP system significantly repressed the stemness and decelerated glioma progression.Conclusions: Our findings elaborate on the inhibitory functions of PDE2A and miR-139 on GSC stemness and tumorigenesis, which may provide new prognostic markers and therapeutic targets for GBMs.  相似文献   

6.
7.
Nasopharyngeal carcinoma (NPC) is a major otorhinolaryngological disease with limited effective therapeutic options. This work focused on the function of microRNA-384 (miR-384) on the NPC pathogenesis and the molecules involved. miR-384 expression in cancer tissues and cells was detected. Gain- and loss-of-functions of miR-384 were performed to identify its role in NPC progression. The target mRNA of miR-384 was predicted on an online system and validated through a luciferase reporter assay. The activity of Wnt/β-catenin signaling was detected. Consequently, miR-384 was found to be poorly expressed in NPC tissues and cell lines and was linked to unfavorable survival rates in patients. Overexpression of miR-384 in 6-10B cells suppressed growth, migration, invasion and resistance to apoptosis of cells, but inverse trends were presented in C6661 cells where miR-384 was downregulated. miR-384 targeted Smad5 mRNA. Upregulation of Smad5 counteracted the roles of miR-384 mimic in cells. The NPC-inhibiting effects of miR-384 mimic were also blocked by Wnt/β-catenin activation. To conclude, miR-384 targets Smad5 and inactivates the Wnt/β-catenin pathway, which exerts a suppressing role in NPC cell behaviors as well as tumor growth in vivo. The findings may offer novel thoughts into NPC therapy.Supplementary InformationThe online version contains supplementary material available at 10.1007/s10616-021-00458-3.  相似文献   

8.
9.
10.
CEACAM1-LF, a homotypic cell adhesion adhesion molecule, transduces intracellular signals via a 72 amino acid cytoplasmic domain that contains two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and a binding site for β-catenin. Phosphorylation of Ser503 by PKC in rodent CEACAM1 was shown to affect bile acid transport or hepatosteatosis via the level of ITIM phosphorylation, but the phosphorylation of the equivalent residue in human CEACAM1 (Ser508) was unclear. Here we studied this analogous phosphorylation by NMR analysis of the 15N labeled cytoplasmic domain peptide. Incubation with a variety of Ser/Thr kinases revealed phosphorylation of Ser508 by GSK3bβ but not by PKC. The lack of phosphorylation by PKC is likely due to evolutionary sequence changes between the rodent and human genes. Phosphorylation site assignment by mass spectrometry and NMR revealed phosphorylation of Ser472, Ser461 and Ser512 by PKA, of which Ser512 is part of a conserved consensus site for GSK3β binding. We showed here that only after phosphorylation of Ser512 by PKA was GSK3β able to phosphorylate Ser508. Phosphorylation of Ser512 by PKA promoted a tight association with the armadillo repeat domain of β-catenin at an extended region spanning the ITIMs of CEACAM1. The kinetics of phosphorylation of the ITIMs by Src, as well dephosphorylation by SHP2, were affected by the presence of Ser508/512 phosphorylation, suggesting that PKA and GSK3β may regulate the signal transduction activity of human CEACAM1-LF. The interaction of CEACAM1-LF with β-catenin promoted by PKA is suggestive of a tight association between the two ITIMs of CEACAM1-LF.  相似文献   

11.
12.
Background: Cholangiocarcinoma (CCA) is a type of hepatobiliary cancer characterized by uncontrolled cell proliferation, with a poor prognosis and high mortality. Nobiletin (NBT) is a promising anti-tumor compound derived from the peels of oranges and other citrus plants, citrus plant. But the effect of NBT on CCA remains unknown.Results: Our data showed that NBT suppressed CCA cell proliferation in vitro and in vivo. Colony formation and Edu assay indicated that NBT inhibited cell proliferation. Cell cycle analysis showed that NBT arrested the cell cycle in G0/G1 phase. Target prediction showed that GSK3β was a direct target. Western blot and immunofluorescence confirmed that NBT reduced the phosphorylation of GSK3β. The antiproliferative effect of NBT was intercepted in GSK3β knockdown CCA cells. The cellular thermal shift assay (CETSA) showed NBT directly bound to GSK3β. Finally, NBT showed an anti-proliferative effect in tumor-bearing mice with no hepatotoxicity.Conclusion: NBT could inhibit CCA proliferation, and the pharmacological activity of NBT in CCA was attributed to its direct binding to GSK3β. We suggested that NBT might be a potential natural medicine in CCA treatment.  相似文献   

13.
Background and Purpose: Recently, several abnormally regulated microRNAs (miRNAs) have been identified in patients with Alzheimer''s disease (AD). The purpose of this study was to identify abnormally expressed miRNAs and to investigate whether they affect pathological changes in AD in the 5xFAD AD mouse model.Experimental Approach: Using microarray analysis and RT-qPCR, miRNA expression in the hippocampus of a 4-month-old 5xFAD mouse model of AD was investigated. A dual-luciferase assay was performed to determine whether the altered miR-200c regulates the translation of the target mRNA, Ywhag. Whether miR-200c modulates AD pathology was determined in primary hippocampal neurons and C57BL/6J mice transfected with miR-200c inhibitor. In addition, total miRNAs were extracted from the serums of 28 healthy age-matched controls and 22 individual participants with cognitive impairment, and RT-qPCR was performed.Key results: miR-200c expression was reduced in the hippocampus of 5xFAD mice. In primary hippocampal neurons, miR-200c regulated the translation of 14-3-3γ and increased tau phosphorylation (p-tau) by increasing p-GSK-3β (GSK-3β phosphorylation). It was also confirmed that miR-200c inhibition in the hippocampus of C57BL/6J mice induces cognitive impairment and increases tau phosphorylation through 14-3-3γ activation. Finally, aberrant expression of miR-200c was confirmed in the blood serum of human AD patients.Conclusion and Implications: Our results strongly suggest that dysregulation of miR-200c expression contributes to the pathogenesis of AD, including cognitive impairment through hyperphosphorylated tau.  相似文献   

14.
Preeclampsia (PE) is a pregnancy complication that is characterized by high blood pressure and is associated with high maternal and fetal morbidities. At a mechanistic level, PE is characterized by reduced invasion ability of trophoblasts. Collagen triple helix repeat containing-1 (CTHRC1) is a well-known tumor-promoting factor in several malignant tumors, but its role in trophoblasts remains unknown. In this study, we characterized the expression of CTHRC1 in placenta tissue samples from PE pregnancies and from normal pregnancies. We used the trophoblasts cell lines HTR-8/SVneo and JEG-3 to investigate the role of CTHRC1 in cell migration, invasion and proliferation. Western blot, PCR and TOP/FOP luciferase activity assays were used to investigate the molecular mechanisms underlying these cell behaviors. Placenta tissue samples obtained from pregnant women with PE expressed lower levels of CTHRC1 than those of placenta tissues from women with normal pregnancies. Down-regulation of CTHRC1 impaired cell proliferation, migration and invasion of trophoblasts, while CTHRC1 overexpression promoted nuclear translocation of β-catenin, a result that was further confirmed by TOP/FOP luciferase activity assay. Our findings suggest that CTHRC1 promotes migration and invasion of trophoblasts via reciprocal Wnt/β-catenin signaling pathway. Down-regulation of CTHRC1 may be a potential mechanism underpinning the development of preeclampsia.  相似文献   

15.
16.
As a flavonoid, baicalein exhibits remarkable anti-cancer roles in several cancers. However, the factors regulating the antitumorigenic roles of baicalein in cervical cancer remain undefined. Here, we revealed that long noncoding RNA SNHG1 is implicated in the tumor-suppressive roles of baicalein. Functional assays demonstrated that ectopic expression of SNHG1 attenuates the roles of baicalein in repressing cervical cancer cell viability, inducing apoptosis, and repressing migration. SNHG1 silencing promotes the tumor-suppressive roles of baicalein in cervical cancer cell viability, apoptosis, and migration. Xenograft assays showed that SNHG1 reverses the tumor-suppressive roles of baicalein in repressing cervical cancer growth in vivo. Mechanistic investigations revealed that SNHG1 directly binds miR-3127-5p and up-regulates FZD4, a target of miR-3127-5p. Via regulating miR-3127-5p/FZD4, SNHG1 activates Wnt/β-catenin signaling. Moreover, SNHG1 reverses the repressive role of baicalein on Wnt/β-catenin signaling. The effect of SNHG1 on the antitumorigenic process of baicalein was abolished by Wnt/β-catenin signaling inhibitor ICG-001. Together, our observations demonstrated that SNHG1 represses the tumor-suppressive roles of baicalein in cervical cancer through regulating miR-3127-5p/FZD4/Wnt/β-catenin axis, and suggested that targeting SNHG1 represents a potential strategy to enhance the tumor-suppressive roles of baicalein in cervical cancer.Impact statementBaicalein exhibits anti-cancer roles in several cancers. However, the factors influencing the antitumorigenic efficiencies of baicalein in CC remain largely unclear. Here, we provide convincing evidences that lncRNA SNHG1 attenuates the tumor-suppressive roles of baicalein in CC cell viability, apoptosis, migration, and CC tumor growth. This study further demonstrates that the influences of SNHG1 in the antitumorigenic process of baicalein are achieved through modulating the miR-3127-5p/FZD4Wnt/β-catenin axis. SNHG1 attenuates the repressive role of baicalein on Wnt/β-catenin. Therefore, SNHG1 is a novel modulator of the tumor-suppressive roles of baicalein and SNHG1 represents a therapeutic intervention target to reinforce the tumor-suppressive roles of baicalein in CC.  相似文献   

17.
18.
19.
Chloride channel-5 (ClC-5), an important branch of the ClC family, is involved in the regulation of the proliferation and cell-fate of a variety of cells, including tumor cells. However, its function in cholangiocarcinoma (CCA) cells remains enigmatic. Here, we discovered that ClC-5 was up-regulated in CCA tissues and CCA cell lines, while ClC-5 silencing inhibited CCA cell proliferation and induced apoptosis. Further mechanism studies revealed that ClC-5 inhibition could inhibit Wnt/β-catenin signaling activity and further activate the mitochondria apoptotic pathway in CCA cells. Furthermore, rescuing Wnt/β-catenin signaling activation eliminated the anti-tumor function of ClC-5 knockdown. Together, our research findings illustrated that ClC-5 inhibition plays an anti-tumor role in CCA cells via inhibiting the activity of the Wnt/β-catenin pathway, which in turn activates the mitochondrial apoptotic pathway.  相似文献   

20.
Hyperactivation of Wnt/β-catenin signaling has been reported in hepatocellular carcinoma (HCC). However, the mechanisms underlying the hyperactivation of Wnt/β-catenin signaling are incompletely understood. In this study, Pantothenate kinase 1 (PANK1) is shown to be a negative regulator of Wnt/β-catenin signaling. Downregulation of PANK1 in HCC correlates with clinical features. Knockdown of PANK1 promotes the proliferation, growth and invasion of HCC cells, while overexpression of PANK1 inhibits the proliferation, growth, invasion and tumorigenicity of HCC cells. Mechanistically, PANK1 binds to CK1α, exerts protein kinase activity and cooperates with CK1α to phosphorylate N-terminal serine and threonine residues in β-catenin both in vitro and in vivo. Additionally, the expression levels of PANK1 and β-catenin can be used to predict the prognosis of HCC. Collectively, the results of this study highlight the crucial roles of PANK1 protein kinase activity in inhibiting Wnt/β-catenin signaling, suggesting that PANK1 is a potential therapeutic target for HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号