共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Panagiotis Halvatsiotis Sofia Vassiliu Panagiotis Koulouvaris Kalliopi Chatzantonaki Konstantinos Asonitis Ekatherina Charvalos Argyris Siatelis Dimitra Houhoula 《Current issues in molecular biology》2022,44(1):329
The aim of this study is to investigate the circulating variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Athens and from rural areas in Greece during July and August 2021. We also present a rapid review of literature regarding significant SARS-CoV-2 mutations and their impact on public health. A total of 2500 nasopharyngeal swab specimens were collected from suspected COVID-19 cases (definition by WHO 2021b). Viral nucleic acid extraction was implemented using an automatic extractor and the RNA recovered underwent qRT-PCR in order to characterize the specimens as positive or negative for SARS-CoV-2. The positive specimens were then used to identify specific Spike gene mutations and characterize the emerging SARS-CoV-2 variants. For this step, various kits were utilized. From the 2500 clinical specimens, 220 were tested positive for SARS-CoV-2 indicating a prevalence of 8.8% among suspected cases. The RT-PCR Ct (Cycle threshold) Value ranged from 19 to 25 which corresponds to medium to high copy numbers of the virus in the positive samples. From the 220 positive specimens 148 (67.3%) were from Athens and 72 (32.7%) from Greek rural areas. As far as the Spike mutations investigated: N501Y appeared in all the samples, D614G mutation appeared in 212 (96.4%) samples with a prevalence of 87.2% in Athens and 98.6% in the countryside, E484K had a prevalence of 10.8% and 12.5% in Athens and the rural areas, respectively. K417N was found in 18 (12.2%) samples from Athens and four (5.6%) from the countryside, P681H was present in 51 (34.5%) Athenian specimens and 14 (19.4%) specimens from rural areas, HV69-70 was carried in 32.4% and 19.4% of the samples from Athens and the countryside, respectively. P681R had a prevalence of 87.2% in Athens and 98.6% in rural areas, and none of the specimens carried the L452R mutation. 62 (28.2%) samples carried the N501Y, P681H, D614G and HV69-70 mutations simultaneously and the corresponding variant was characterized as the Alpha (UK) variant (B 1.1.7). Only six (2.7%) samples from the center of Athens had the N501Y, E484K, K417N and D614G mutations simultaneously and the virus responsible was characterized as the Beta (South African) variant (B 1.351). Our study explored the SARS-CoV-2 variants using RT-PCR in a representative cohort of samples collected from Greece in July and August 2021. The prevalent mutations identified were N501Y (100%), D614G (96.4%), P681R (90.1%) and the variants identified were the Delta (90.1%), Alpha (28.2%) and Beta (2.7%). 相似文献
3.
《Saudi Journal of Biological Sciences》2020,27(10):2531-2538
In late December 2019, the world woke to a reality of a pandemic of Coronavirus Disease (COVID-19), elicited by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which belongs to a group of β-coronavirus. The potential to cause life-threatening respiratory failure and rapid transmission puts COVID-19 in the list of Public Health Emergency of International Concern (PHEIC). In the last two decades, this is the 3rd deadliest Coronavirus pandemic, following SARS which lasted between 2002 and 2003 and Middle East Respiratory Syndrome (MERS) from 2012 till date. Globally and as of April 23rd 2020, COVID-19 has affected 2,544,792 individuals in over 200 countries, causing 175,694 fatalities. While the SARS-CoV-2 originated in China with 84,302 confirmed cases and 4642 deaths as at the time of writing this review, the rapid transmission of SARS-CoV-2 has resulted in exponential increase in the number of cases outside of China to about 10 times the report case and death in mainland China. SARS-CoV-2 is suspected to be zoonotic in nature as genetic studies have shown sequence similarity to viruses originating from bats. Extreme precautionary measures, such as curfew, shutting of borders and quarantining of individuals suspected to be infected have been instituted with immediate effect; however, due to individuals that are asymptomatic, uncontrolled human-to-human transmission has resulted in exponential infection rate and numerous loss of lives even with this lockdown measures. This review article summarizes the developing situation surrounding the SARS-CoV-2 pandemic with respect to its epidemiology, unique genomic structure, possible origins, transmission, pathogenesis, comparison with other deadly species of Coronaviruses (CoV) and emerging treatment strategies built on informed literature. 相似文献
4.
5.
6.
7.
Chunmei Li Yifei Qi Xin Teng Zongchang Yang Ping Wei Changsheng Zhang Lei Tan Lu Zhou Ying Liu Luhua Lai 《The Journal of biological chemistry》2010,285(36):28134-28140
The 3C-like proteinase (3CLpro) of the severe acute respiratory syndrome (SARS) coronavirus plays a vital role in virus maturation and is proposed to be a key target for drug design against SARS. Various in vitro studies revealed that only the dimer of the matured 3CLpro is active. However, as the internally encoded 3CLpro gets matured from the replicase polyprotein by autolytic cleavage at both the N-terminal and the C-terminal flanking sites, it is unclear whether the polyprotein also needs to dimerize first for its autocleavage reaction. We constructed a large protein containing the cyan fluorescent protein (C), the N-terminal flanking substrate peptide of SARS 3CLpro (XX), SARS 3CLpro (3CLP), and the yellow fluorescent protein (Y) to study the autoprocessing of 3CLpro using fluorescence resonance energy transfer. In contrast to the matured 3CLpro, the polyprotein, as well as the one-step digested product, 3CLP-Y-His, were shown to be monomeric in gel filtration and analytic ultracentrifuge analysis. However, dimers can still be induced and detected when incubating these large proteins with a substrate analog compound in both chemical cross-linking experiments and analytic ultracentrifuge analysis. We also measured enzyme activity under different enzyme concentrations and found a clear tendency of substrate-induced dimer formation. Based on these discoveries, we conclude that substrate-induced dimerization is essential for the activity of SARS-3CLpro in the polyprotein, and a modified model for the 3CLpro maturation process was proposed. As many viral proteases undergo a similar maturation process, this model might be generally applicable. 相似文献
8.
目的: 制备热稳定性好、耐RNase攻击及可全程监控操作的核酸检测新型冠状病毒阳性质控品。方法: 分别扩增MS2噬菌体外壳蛋白CP(含PAC位点)基因以及成熟酶蛋白A基因序列(含核糖体结合位点),先后插入质粒pET28a多克隆位点不同位置,构建通用重组载体pET28a/CP-A。合成包含ORF1ab基因、N基因和E基因三个靶标的特定核酸序列,插入到重组载体pET28a/CP-A中PAC位点的下游,构建包含靶序列的重组载体pET28a/CP-A/S。通过原核表达系统表达目的蛋白,采用硫酸铵和凝胶过滤层析进行纯化,利用透射电镜和动态光散射对蛋白质进行物理表征。全能核酸酶消化形成的盔甲RNA,通过RT-PCR检测其残余核酸和热稳定性。结果: 成功构建包含MS2噬菌体外壳蛋白CP基因、成熟酶蛋白A基因和外源靶核酸的重组载体,目的蛋白在25℃、IPTG 0.3mmol /L、诱导14h时以可溶性形式得到高效表达,纯化后,得到了大小均一、直径为23~28nm的病毒样颗粒,经核酸酶消化后RT-PCR检测,颗粒溶液中几乎无核酸残余且形成了包封靶基因的盔甲RNA。加速破坏试验表明该盔甲RNA无菌过滤后可在37℃稳定保持10天。结论: 在体外,利用MS2噬菌体外壳蛋白和成熟酶蛋白自组装包封外源靶序列制备的盔甲RNA,其热稳定性好,可全程监控整个检测过程,可作为核酸检测SARS-CoV-2的定性或定量质控品。 相似文献
9.
目的: 制备热稳定性好、耐RNase攻击及可全程监控操作的核酸检测新型冠状病毒阳性质控品。方法: 分别扩增MS2噬菌体外壳蛋白CP(含PAC位点)基因以及成熟酶蛋白A基因序列(含核糖体结合位点),先后插入质粒pET28a多克隆位点不同位置,构建通用重组载体pET28a/CP-A。合成包含ORF1ab基因、N基因和E基因三个靶标的特定核酸序列,插入到重组载体pET28a/CP-A中PAC位点的下游,构建包含靶序列的重组载体pET28a/CP-A/S。通过原核表达系统表达目的蛋白,采用硫酸铵和凝胶过滤层析进行纯化,利用透射电镜和动态光散射对蛋白质进行物理表征。全能核酸酶消化形成的盔甲RNA,通过RT-PCR检测其残余核酸和热稳定性。结果: 成功构建包含MS2噬菌体外壳蛋白CP基因、成熟酶蛋白A基因和外源靶核酸的重组载体,目的蛋白在25℃、IPTG 0.3mmol /L、诱导14h时以可溶性形式得到高效表达,纯化后,得到了大小均一、直径为23~28nm的病毒样颗粒,经核酸酶消化后RT-PCR检测,颗粒溶液中几乎无核酸残余且形成了包封靶基因的盔甲RNA。加速破坏试验表明该盔甲RNA无菌过滤后可在37℃稳定保持10天。结论: 在体外,利用MS2噬菌体外壳蛋白和成熟酶蛋白自组装包封外源靶序列制备的盔甲RNA,其热稳定性好,可全程监控整个检测过程,可作为核酸检测SARS-CoV-2的定性或定量质控品。 相似文献
10.
11.
SARS冠状病毒基因组中非结构基因nsp3编码的木瓜样蛋白酶 (PLpro) 在病毒基因组复制及逃避宿主天然免疫中发挥重要作用,是研发抗病毒药物的重要靶标.SARS冠状病毒PLpro是一种病毒编码的去泛素化酶 (DUB).为深入研究SARS冠状病毒 PLpro对泛素样分子 (ubiquitin-like protein,UBL) 的DUB特性,本研究构建缺失 PLpro N末端泛素样结构域 (Ubl) 和下游跨膜结构域 (TM) 的PLpro构建体(constructs),并构建3种缺失蛋白酶催化活性的突变体,检测PLpro对泛素样分子干扰素刺激基因15 (ISG15)及SUMO-1的作用.实验结果表明,PLpro和PLpro-TM 在细胞内具有很强的去ISG(DeISGylation) 活性;缺失PLpro N末端泛素样结构域(Ubl) 对PLpro 的去ISG15 活性没有影响;对PLpro蛋白酶活性位点C1651 和 H1812 突变后,PLpro-TM的去ISG15活性消失,而对D1826位点突变后不影响此活性.PLpro 不具有去SUMO (DeSUMOylation)活性,而PLpro-TM具有一定的去SUMO活性;PLpro催化活性相关的3个关键氨基酸残基 Cys-His-Asp突变后对去SUMO活性有一定的影响.研究结果提示,SARS PLpro除了具有DUB的活性,还具有体内去ISG活性和去SUMO活性;PLpro蛋白酶活性与其去ISG活性之间有一定相关性;PLpro去SUMO-1 活性具有TM 依赖性.SARS冠状病毒PLpro 对泛素样分子作用特性的研究为阐明病毒逃避宿主天然免疫机制和开发新型抗病毒药物提供重要的理论依据. 相似文献
12.
SARS冠状病毒基因组编码2种病毒蛋白酶,即木瓜样蛋白酶(PLpro)和3C样蛋白酶(3CLpro).其中,PLpro蛋白酶结构与功能研究是近年来冠状病毒分子生物学研究的热点之一. PLpro蛋白酶参与SARS冠状病毒1a(1ab)复制酶多聚蛋白N端部分的切割加工,是SARS冠状病毒复制酶复合体(RC)形成的重要调节蛋白分子;最新研究表明,SARS冠状病毒PLpro蛋白酶是一种病毒编码的去泛素化酶(DUB),对细胞蛋白具有明显去泛素化作用;而且对泛素(Ub)和泛素样分子ISG15均具有活性. PLpro蛋白酶对宿主抗病毒天然免疫反应具有负调节作用,是SARS冠状病毒的一种重要干扰素拮抗分子.PLpro蛋白酶是一种多功能病毒蛋白酶.本文结合作者课题组研究工作,对SARS冠状病毒PLpro蛋白酶结构和功能研究最新进展进行综述. 相似文献
13.
Susanna K. P. Lau Yun Feng Honglin Chen Hayes K. H. Luk Wei-Hong Yang Kenneth S. M. Li Yu-Zhen Zhang Yi Huang Zhi-Zhong Song Wang-Ngai Chow Rachel Y. Y. Fan Syed Shakeel Ahmed Hazel C. Yeung Carol S. F. Lam Jian-Piao Cai Samson S. Y. Wong Jasper F. W. Chan Kwok-Yung Yuen Hai-Lin Zhang Patrick C. Y. Woo 《Journal of virology》2015,89(20):10532-10547
14.
15.
SARS冠状病毒M蛋白的生物信息学研究 总被引:2,自引:0,他引:2
针对GenBank上发布的来自不同国家地区的39条SARSCoV推测M蛋白,采用生物信息学软件分析其核酸和氨基酸序列,获得其分子生物学特征,确定突变位点,预测功能结构区、Motif及抗原决定簇,比较基因突变对这些功能结构的影响.结果表明:在39个病毒株M蛋白的666 bp中,共有18个病毒株在7个位点上发生了25次变异.在M蛋白序列上预测获得3个跨膜螺旋序列和一个可能的信号肽序列.氨基酸序列的变异主要发生在其跨膜和胞外区域,胞内区域相对较少.预测发现12个Motif和7个抗原决定簇.提示突变对M蛋白的结构功能区的影响不大,也未造成M蛋白的Motif的数量和构成发生改变.对抗原决定簇的影响也主要体现在序列成分构成的改变上,在设计疫苗时,应考虑由其导致的抗原特性改变. 相似文献
16.
I-Yin Chen Shin C. Chang Hung-Yi Wu Ting-Chun Yu Wen-Chin Wei Shiming Lin Chung-Liang Chien Ming-Fu Chang 《Journal of virology》2010,84(15):7703-7712
Severe acute respiratory syndrome coronavirus (SARS-CoV) was identified to be the causative agent of SARS with atypical pneumonia. Angiotensin-converting enzyme 2 (ACE2) is the major receptor for SARS-CoV. It is not clear whether ACE2 conveys signals from the cell surface to the nucleus and regulates expression of cellular genes upon SARS-CoV infection. To understand the pathogenesis of SARS-CoV, human type II pneumocyte (A549) cells were incubated with the viral spike protein or with SARS-CoV virus-like particles containing the viral spike protein to examine cytokine modulation in lung cells. Results from oligonucleotide-based microarray, real-time PCR, and enzyme-linked immunosorbent assays indicated an upregulation of the fibrosis-associated chemokine (C-C motif) ligand 2 (CCL2) by the viral spike protein and the virus-like particles. The upregulation of CCL2 by SARS-CoV spike protein was mainly mediated by extracellular signal-regulated kinase 1 and 2 (ERK1/2) and AP-1 but not the IκBα-NF-κB signaling pathway. In addition, Ras and Raf upstream of the ERK1/2 signaling pathway were involved in the upregulation of CCL2. Furthermore, ACE2 receptor was activated by casein kinase II-mediated phosphorylation in cells pretreated with the virus-like particles containing spike protein. These results indicate that SARS-CoV spike protein triggers ACE2 signaling and activates fibrosis-associated CCL2 expression through the Ras-ERK-AP-1 pathway.Severe acute respiratory syndrome (SARS) is an atypical pneumonia that occurred in several countries during late 2002 and the first half of 2003. A novel coronavirus, SARS-coronavirus (SARS-CoV), isolated from SARS patients was identified to be the causative agent of SARS. SARS-CoV infected more than 8,000 people, with a worldwide mortality rate of 9.6% (8, 20). The virus contains a positive-sense single-stranded RNA genome of approximately 30,000 nucleotides. Four major structural proteins including spike (S), membrane (M), envelope (E), and nucleocapsid (N) make up the SARS-CoV particles (31, 36). Angiotensin (Ang)-converting enzyme 2 (ACE2) and CD209L (L-SIGN) have been identified to be the receptors for SARS-CoV (15, 27). SARS-CoV spike protein induced ACE2-mediated interleukin-8 (IL-8) release from lung cells via activation of activation protein 1 (AP-1) (4). Nevertheless, involvement of ACE2 in virus pathogenesis is not fully understood.Dysregulation of inflammatory cytokines and adhesion molecules may be involved in lung injury that causes acute respiratory distress syndrome. High levels of proinflammatory cytokines such as interleukin-6, transforming growth factor β (TGF-β), and tumor necrosis factor alpha (TNF-α) were detected in the sera and ACE2+ cells of SARS patients (12, 45). Elevated levels of cytokines, including alpha interferon (IFN-α), IFN-β, IFN-γ, CCL3, CCL5, and CXCL10, were also detected in SARS-CoV-infected macrophages, dendritic cells, and a colon carcinoma cell line (1, 5, 25). It is possible that the high fatality rate of SARS results from a severe immune response caused by cytokines and chemokines.CCL2 [chemokine (C-C motif) ligand 2; monocyte chemoattractant protein-1, (MCP-1)] is a CC chemokine that attracts monocytes, memory T lymphocytes, and basophils. CCL2 and its receptor CCR2 are involved in inflammatory reactions, including monocyte/macrophage migration, Th2 cell polarization, and the production of TGF-β and procollagen in fibroblast cells (9, 10). CCL2 is thus associated with several lung inflammatory disorders including acute respiratory distress syndrome, asthma, and pulmonary fibrosis (35). These inflammatory disorders and pulmonary infiltration are known to account for the progressive respiratory failure and death of SARS patients. In addition, upregulation of CCL2 was detected in the sera of SARS patients and the supernatant of a SARS-CoV-infected culture system (5, 16). However, mechanisms by which SARS-CoV is involved in the upregulation of CCL2 are not known.In this study, we have taken a step forward in understanding the pathogenesis of SARS-CoV by examining SARS-CoV-mediated cytokine modulation in human type II pneumocyte (A549) cells and monkey kidney Vero E6 cells. Both pretreatment of A549 cells with SARS-CoV virus-like particles (VLPs) and preincubation of the cells with the viral spike protein upregulate the expression of fibrosis-associated CCL2. SARS-CoV may interact with ACE2 receptor and activate casein kinase II-mediated ACE2 phosphorylation, which is critical for SARS-CoV-induced CCL2 upregulation. In addition, Ras, Raf, MEK, extracellular signal-regulated kinase 1 and 2 (ERK1/2), and AP-1 are directly involved in SARS-CoV-induced CCL2 upregulation. These data suggest that the intracellular ACE2 signaling pathway in the pneumocytes of SARS-CoV-infected patients confers risks of lung fibrosis leading to respiratory failure. 相似文献
17.
Tarique Mohammed Ahmad Shaban Malik Arshi Ahmad Irfan Saeed Mohd Almatroudi Ahmad Qadah Talal Murad Manal Abdulaziz Mashraqi Mutaib Alam Qamre Al-Saleh Yousef 《Molecular and cellular biochemistry》2021,476(5):2203-2217
Molecular and Cellular Biochemistry - Novel strain of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) causes mild to severe respiratory illness. The early symptoms may be fever, dry... 相似文献
18.
Severe Acute Respiratory Syndrome Coronavirus Protein 6 Is Required for Optimal Replication 下载免费PDF全文
Jincun Zhao Ana Falcón Haixia Zhou Jason Netland Luis Enjuanes Pilar Pérez Bre?a Stanley Perlman 《Journal of virology》2009,83(5):2368-2373
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes several accessory proteins of unknown function. One of these proteins, protein 6 (p6), which is encoded by ORF6, enhances virus replication when introduced into a heterologous murine coronavirus (mouse hepatitis virus [MHV]) but is not essential for optimal SARS-CoV replication after infection at a relatively high multiplicity of infection (MOI). Here, we reconcile these apparently conflicting results by showing that p6 enhances SARS-CoV replication to nearly the same extent as when expressed in the context of MHV if cells are infected at a low MOI and accelerates disease in mice transgenic for the human SARS-CoV receptor.The genome of severe acute respiratory syndrome coronavirus (SARS-CoV) encodes several structural proteins, including the spike, nucleocapsid, membrane, and envelope proteins (13). Integrated between and within these structural proteins are eight accessory proteins (6, 8, 10, 15, 16, 18, 21-27). Our laboratory showed previously that one of these SARS-CoV-specific accessory proteins, encoded by ORF6, showed a clearly recognizable phenotype when introduced into a heterologous attenuated murine coronavirus, mouse hepatitis virus (MHV) strain J2.2-V-1 (rJ2.2.6). rJ2.2.6 grew more rapidly and to higher titers in tissue culture cells and in the murine central nervous system than control viruses, and the presence of p6 increased mortality in mice from 10 to 20% to 80% (7, 19, 20). However, the absence of p6 did not diminish SARS-CoV growth in tissue culture cells when cells were infected with 1 PFU/cell (31). In addition to a role in enhancing virus replication, when expressed in the context of a SARS-CoV infection or by transfection, p6 blocked interferon (IFN)-induced STAT1 nuclear translocation by retention of the nuclear import adaptor molecule karyopherin alpha 2 in the cytoplasm, indicating a role in thwarting innate immune effectors (5, 11). In contrast, p6 did not significantly diminish IFN sensitivity when expressed in the context of rJ2.2 (20).The results described above were puzzling, because p6 seemed to be required for the optimal replication of a heterologous coronavirus but not for that of SARS-CoV. Thus, the objective of this study was to determine whether p6 could enhance SARS-CoV replication in tissue culture cells under any conditions. For this purpose, we examined its function by comparing the growth of a recombinant SARS-CoV (rSARS-CoV) in which p6 was deleted (rSARS-CoVΔ6) with that of wild-type rSARS-CoV at a range of multiplicities of infection (MOIs). Normal mice infected with SARS-CoV readily cleared the infection, making it difficult to detect a role for p6 in vivo. However, mice that are transgenic for expression of the human receptor angiotensin-converting enzyme 2 (hACE2) are exquisitely sensitive to infection with SARS-CoV and are useful for identifying an in vivo role for p6 (14). 相似文献
19.
20.
血中检测SARS冠状病毒N蛋白在SARS实验室早期诊断中的作用 总被引:1,自引:0,他引:1
为明确严重急性呼吸综合症(SARS)冠状病毒N蛋白在SARS实验室早期诊断中的作用,通过微量中和试验及酶联免疫方法、间接免疫荧光法检测疑似病人恢复期血清(大于28天)中SARS-IgG抗体,确诊SARS患者。同时收集发病不同时期SARS及普通发热病人血清,利用酶联免疫方法检测SARS-CoVN蛋白,并与荧光定量PCR早期诊断方法相比较。共检测:广州地区2003年12月~2004.年1月新发4例确诊SARS患者不同时期的血液和咽漱液标本;恢复期血清SARS-CoV中和抗体阳性病人不同时期的血清46份;广州地区2003年1月~4月临床确诊SARS患者159例的血清和56例疑似患者血清;非SARS普通发热病人血清97份;正常人体检血清100份。结果:4例新发SARS患者的不同时期标本中,3例患者急性期血均检出N蛋白,优于常用的荧光定量PCR检测方法。46份SARS-CoV中和抗体阳性的血清标本,N蛋白检出率为100%。159例临床确诊病例中,发病早期5天以内SARS-CoVN蛋白的检出率为92.3%,随后呈现逐步下降的趋势,在发病第18天仍可检出。56例临床疑似患者发病早期也有23.2%检出率。而97例普通发热病人及100份正常人血清中均未能检测出SARS-CoVN蛋白。表明在血清中检测SARS冠状病毒N蛋白的方法敏感性和特异性都好,对SARS实验室早期诊断具有重要作用。 相似文献