首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mangrove forest along the northern Brazilian coast is not inundated during low tide. However, many fish species stay in the mangrove forest during this time. Tidal behaviour strategies are described for fish species that linger in the mangrove forest during low tide. The samples were taken at the end of the dry season (December 1996) and at the end of the rainy season (July 1997). Fish were captured using an ichthyotoxic plant extract (Ichthyotere cunabi). Spatial and temporal fish density and biomass were analyzed statistically. Thirty-six samples were taken with a total density of 2.8 ind m-2 and a total biomass of 17.4 g m-2 distributed among seven families and 14 species. Myrophis punctatus was the most important species in number (1.66 ind m-2) and weight (12.68 g m-2) of all catches. The total fish densities were not significantly different among areas and between months, although, total biomass differed significantly in time and space. The densities and biomass for the three most dominant species (M. punctatus, Poecilia spp. and Gobionellus smaragdus) differed significantly among species. Only the biomass of these species showed significant monthly differences. The only significant main effect on variance in the densities and biomass of M. punctatus were encountered between months. In addition, the factor area was significantly different for the variable number of species.  相似文献   

2.
Artificial reefs are often deployed by many countries for the purpose of enhancing fishing after a period of several years. The objective of this study was to analyze the effect of a pilot artificial reef system deployment in enhancing the demersal fish assemblages, investigated using both acoustic methods and bottom trammel nets, during four years between 2011 and 2017, in Xiangshan Bay, Zhejiang Province, China. Comparisons of community indices, including fish biomass, species richness and species diversity, indicated relatively consistent trends between the control sites and the artificial reefs following their deployment in 2012. Fish density, represented by the value of the nautical area scattering coefficient, and fish biomass were significantly higher on the artificial reefs than at the control sites in 2015 and 2017, and species richness and diversity were significantly greater at the reefs from 2013 to 2017. Blackhead seabream (Acanthopagrus schlegelii) and false kelpfish (Sebastiscus marmoratus) were the dominant fishes on the artificial reefs, and the average body lengths of these two species were significantly greater 40 and 64 months after deployment. Thus, construction of the artificial reefs appears to have achieved their primary purpose as fish-attraction devices, thereby contributing to ecological restoration in Xiangshan Bay.  相似文献   

3.
Diversity and community structure of coastal fishes were compared between reforested mangrove and reclaimed sandy habitats at Pasir Ris, in the eastern part of Singapore. Both habitats supported a total of 91 species, but a single species, Ambassis kopsii dominated in abundance. Mean fish density was significantly higher at the reclaimed sandy shore than the reforested mangrove, but the reforested mangrove habitat yielded higher diversity. Apart from A. kopsii, abundant species in the mangroves included Ambassis interrupta, Thryssa hamiltonii, Acentrogobius sp., Scatophagus argus and Arius sagor. Anodontostoma chacunda, Acentrogobius sp., Leiognathus decorus, Sillago sihama and Stolephorus sp. were abundant in the reclaimed sandy habitat. Both habitats exhibited a higher mean density and average species richness during high tide. Several species from the family Gobiidae dominated the catch during low tide while pelagic fishes were most abundant during high tide. Diel variation showed significantly higher density during the day than at night, a result that contrasts to similar studies elsewhere. However, species richness showed no significant variation between day and night catches. Interaction between combined factors of time of the day and tidal height on fish density and average species richness was significantly different. The results indicated both habitat types to be important fish nurseries.  相似文献   

4.
1. Using data from 71, mainly shallow (an average mean depth of 3 m), Danish lakes with contrasting total phosphorus concentrations (summer mean 0.02–1.0 mg P L?l), we describe how species richness, biodiversity and trophic structure change along a total phosphorus (TP) gradient divided into five TP classes (class 1–5: <0.05, 0.05–0.1, 0.1–0.2, 0.2–0.4,> 0.4 mg P L?1).
2. With increasing TP, a significant decline was observed in the species richness of zooplankton and submerged macrophytes, while for fish, phytoplankton and floating‐leaved macrophytes, species richness was unimodally related to TP, all peaking at 0.1–0.4 mg P L?1. The Shannon–Wiener and the Hurlbert probability of inter‐specific encounter (PIE) diversity indices showed significant unimodal relationships to TP for zooplankton, phytoplankton and fish. Mean depth also contributed positively to the relationship for rotifers, phytoplankton and fish.
3. At low nutrient concentrations, piscivorous fish (particularly perch, Perca fluviatilis) were abundant and the biomass ratio of piscivores to plankti‐benthivorous cyprinids was high and the density of cyprinids low. Concurrently, the zooplankton was dominated by large‐bodied forms and the biomass ratio of zooplankton to phytoplankton and the calculated grazing pressure on phytoplankton were high. Phytoplankton biomass was low and submerged macrophyte abundance high.
4. With increasing TP, a major shift occurred in trophic structure. Catches of cyprinids in multiple mesh size gill nets increased 10‐fold from class 1 to class 5 and the weight ratio of piscivores to planktivores decreased from 0.6 in class 1 to 0.10–0.15 in classes 3–5. In addition, the mean body weight of dominant cyprinids (roach, Rutilus rutilus, and bream, Abramis brama) decreased two–threefold. Simultaneously, small cladocerans gradually became more important, and among copepods, a shift occurred from calanoid to cyclopoids. Mean body weight of cladocerans decreased from 5.1 μg in class 1 to 1.5 μg in class 5, and the biomass ratio of zooplankton to phytoplankton from 0.46 in class 1 to 0.08–0.15 in classes 3–5. Conversely, phytoplankton biomass and chlorophyll a increased 15‐fold from class 1 to 5 and submerged macrophytes disappeared from most lakes.
5. The suggestion that fish have a significant structuring role in eutrophic lakes is supported by data from three lakes in which major changes in the abundance of planktivorous fish occurred following fish kill or fish manipulation. In these lakes, studied for 8 years, a reduction in planktivores resulted in a major increase in cladoceran mean size and in the biomass ratio of zooplankton to phytoplankton, while chlorophyll a declined substantially. In comparison, no significant changes were observed in 33 ‘control’ lakes studied during the same period.  相似文献   

5.
Spatial and temporal variation in the fish community structure were studied in a tropical non-estuarine embayment in Chwaka Bay, Zanzibar (Tanzania). Fish samples were collected bi-monthly (at each spring low tide) for 1 year (November 2001–October 2002) from a range of bay habitats ranging from mangroves deep inside the bay to seagrass beds close to the mouth of the bay. Additionally, environmental variables were examined to determine their relationship with the fish community structure. Being a non-estuarine embayment, the environmental variables as well as the fish community structure in each habitat remained relatively constant for most part of the year; however, a marked decline was observed during the rainy period (April–May). Significant variations in fish community variables (density, biomass and species richness) and in water temperature and salinity were observed during the rainy season in all habitats, with larger changes in the mangrove and mud/sand flats habitats than in the seagrass beds. Seasonal variations in water clarity and dissolved oxygen were not significant, though. Many species disappeared from the mangrove and mud/sand flats habitats during the rainy season and those which persisted showed a remarkable decrease in density. Moreover, the results indicate that mangroves were the preferred settling habitats for Gerres filamentosus, Gerres oyena, Lethrinus lentjan and Monodactylus argenteus, especially during the dry period (December–February) before the rainy season. This observation is contrary to what has been reported from some other tropical regions where greater abundance and species richness was observed during the rainy season. A significant relationship was found between density of fish and temperature, salinity and turbidity. Since salinity was the most conspicuously changing environmental variable with seasons, we propose that salinity, alone or in combination with low visibility and temperature, was probably the most important environmental factor structuring the fish assemblage in the mangrove and mud/sand flats habitats, particularly during the rainy season. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: J. A. Cambray  相似文献   

6.
中街山列岛海洋保护区鱼类物种多样性   总被引:2,自引:0,他引:2  
梁君  徐汉祥  王伟定 《生态学报》2013,33(18):5905-5916
基于2010-2012年在中街山列岛海洋保护区进行的8个航次底拖网调查数据资料,从鱼类分类学和生态类群等方面,结合多样性、资源密度和相对重要性指数,对该保护区鱼类物种多样性特征进行了分析。调查海域共采集鱼类55种,隶属2纲12目32科44属。其中,鲈形目鱼类26种,占47.3%;趋礁性鱼类41种,占74.5%;暖温性、暖水性和冷温性鱼类分别为30、24和1种,其中暖水种约占所有偶见种的70%;定居种、近海洄游种和季节性种分别为27、24和24种;底层、近底层和中上层鱼类分别占40.0%、36.4%和23.6%,其中矛尾鰕虎鱼(Chaeturichthys stigmatias)、龙头鱼(Harpodon nehereus)和鳀科鱼类分别成为各水层的绝对优势种。所有调查站点鱼类平均生物量指数夏季最高(1043.7 kg/km2),春季最低;尾数密度指数春季最高(122×103 尾/km2),冬季最低;生物量与尾数密度指数最高与最低季节之间均存在显著性差异(P<0.05)。对多样性的分析显示,Margalef丰富度(D)冬季最高,秋季最低,Shannon-Wiener多样性(H')与Pielou均匀度(J')均为夏季最高,秋季最低。聚类和NMDS方法分析显示不同季节鱼类群落组成格局差异极显著(P<0.01)。研究结果表明,中街山列岛海洋保护区鱼类资源结构受近海季节性洄游种类影响较大,鱼类分布季节动态多呈现洄游性更替节律,保护区内虽已出现鱼类多样性下降趋势和生态系统功能退化现象,传统经济种类的优越性在逐渐下降或边缘化,但独特的岛礁生境仍能很好地发挥着维持固有种类和提供良好栖息场所的优势,随着海洋牧场建设与一系列资源保护与修复措施,石首鱼科幼体已形成优势群体,而且保护区内出现大量小型饵料鱼类。  相似文献   

7.
Abstract. We compared vegetation establishment in 25 treefall pits and mounds along a hillside elevational gradient in a fourth-year catastrophic windthrow in eastern North America. Plant communities differed greatly between pits and mounds, with pit microsites having significantly greater species richness, total biomass, and total tree stem density. Species richness in pits and on mounds decreased with increasing elevation from the bottom of the hillside, although the effect of elevation on mound species richness was less than that of elevation on pit species richness. Biomass of Erechtites hieraciifolia decreased significantly, while that of Betula alleghaniensis increased significantly with elevation. However, total biomass of both pit and mound microsites was unrelated to elevation. Total stem density decreased with elevation in pits, but was unaffected by elevation on mounds. This study shows that both small-scale (microsite) effects and intermediate-scale effects influence the re-establishment of plant communities within this catastrophic windthrow. Consideration of both microsite and position along intermediate-scale gradients may allow more precise prediction of plant community composition and dynamics in recovery of disturbed areas.  相似文献   

8.
水产养殖、城镇建设等引起的土地利用变化使红树林生态系统遭受严重破坏,是红树林生物多样性面临的主要威胁之一。了解雷州半岛红树林鱼类群落结构,探究人类活动强度对鱼类群落结构的影响,对红树林鱼类资源保护至关重要。基于2021—2022年雷州半岛7片红树林共21条潮沟的鱼类数据,结合周边土地利用数据,研究鱼类群落结构及其与土地利用类型的关系。结果显示,共采集鉴定鱼类49种,隶属于8目25科,鲈形目鱼类最多,共33种占总种类数的75.5%,其中,虾虎鱼科种数最多,共15种占30.6%;食性上,主要为杂食性和肉食性鱼类,分别为53.06%和44.90%;各红树林Shannon-Wiener多样性指数在秋冬春三季的变化范围均为0—2.5,Simpson多样性指数均为0—0.9;各红树林鱼类个体数、物种数和生物量均存在显著差异(P>0.05);除秋季北潭与流沙湾的鱼类群落无显著差异(P>0.05)外,其余红树林间的鱼类群落在三个季度均有显著差异(P<0.05);人类活动强度、红树林面积和东西岸对鱼类多样性指数、个体数、物种数和生物量均有显著的主效应和交互效应(P<0.05);青...  相似文献   

9.
  1. Ponds can provide important refuges for aquatic biota on developed floodplains and are increasingly being constructed in an effort to enhance native biodiversity and ecosystem services in degraded landscapes. This study examined 34 constructed ponds to investigate the influence of design features on community composition, native biodiversity, and the biomass or abundance of common fish and waterbirds on the lower Waikato River floodplain, northern New Zealand.
  2. Inundation frequency appeared to be a key factor affecting biomass of the native shortfin eel Anguilla australis and three invasive fish species (common carp [Cyprinus carpio], brown bullhead [Ameiurus nebulosus], and goldfish [Carassius auratus]), suggesting that colonisation occurred during flooding by adjacent waterbodies. Linear models indicated that shortfin eel abundance and total eel biomass were positively associated with the biomass of potential fish prey, the area occupied by islands and cover by trees in the riparian zone.
  3. Native waterbird species richness was strongly related to water area, edge length (including islands) and area:perimeter ratio, with little increase in richness for ponds >1 ha in area, perimeters longer than 800 m, and ratios over 20. The protected grey teal (Anas gracilis), and the recreationally hunted species phenotypically assigned as mallard (Anas platyrhynchos + hybrids) and grey duck (Anas superciliosa + hybrids) appeared most strongly influenced, respectively, by perimeter length, water depth, and biomass of potential macroinvertebrate food supplies, suggesting variable effects of pond design attributes among waterfowl species.
  4. Overall, these results indicate that constructed ponds can be designed to promote native waterbird diversity, enhance eel fishery and waterfowl gamebird services, and also limit the proliferation of some non-native invasive fish species in degraded floodplain landscapes. A hierarchy of constructed pond design attributes was identified, involving landscape position and connectivity, pond morphology and complexity, and riparian maturity and buffering, which were associated with direct (habitat) and indirect (food supply, physicochemistry) effects on biodiversity and provisioning services.
  相似文献   

10.
Six hectares, three in a primary forest and three in a 40 year old secondary forest were inventoried for all trees with Diameter at Breast Height (DNH) of 10 cm or greater in a terra firme forest 200 km north-east of Manaus, central Amazonia in order to compare the difference between structure, species richness and floristic composition. Both species richness and tree density were significantly higher in the upland forest than in the secondary forest. The forest structure pattern analysed (DBH, basal area and estimated dry biomass) did not differ significantly between the two forest types. Similarity indices at species level were only 14%. In the 3 ha of primary forest the number of species varied from 137 to 159, the number of individuals from 639 to 713, total basal area from 32.8 to 40.2 m2 and estimate total of above-ground dry biomass (AGBM) from 405 to 560 tons per ha. In the 3 ha of secondary forest, the number of species varied from 86 to 90, the number of individuals from 611 to 653, total basal area from 28.8 to 39.9 m2 and estimated total AGBM from 340 to 586 tons per ha. Family Importance Value (FIV) is the sum of relative density, dominance and richness of a family. The most important families in relation to FIV were Burseraceae, Chrysobalanaceae, Lecythidaceae, Myristicaceae, Bombacaceae, Fabaceae and Mimosaceae in the 3 ha of primary forest, while Burseraceae, Lecythidaceae, Sapotaceae, Arecaceae and Cecropiaceae were the most important families in the 3 ha of secondary forest. Importance Value Index (IVI) is the sum of relative density, dominance and frequency of a species. Alexa grandiflora (Caesalpiniaceae), Sckronema micranthum (Bombacaceae) and Pourouma guianensis (Cecropiaceae) were the most important species in relation IVI, in the primary forest, while Eschweilera grandiflora (Lecythidaceae), Protium apiculatum (Burseraceae) and Bertholletia excelsa (Lecythidaceae) were the most important species in the secondary forest. We conclude that species richness was significandy different between the two forests, but that forest structure patterns analysed in this study (DBH, basal area and dry biomass) were similar. This demonstrates that 40 years was sufficient time for the secondary forest to recover the original structure of the primary forest, but not the original species richness. The low species similarity between the two forests indicates that the floristic composition was quite distinct and that the mixture of primary forest and disturbed forest has led to an increase in total species diversity.  相似文献   

11.
Chironomid communities were analyzed in systems with three types of predator regimes to determine hierarchical effects of predation; ponds without fish present, lakes with slimy sculpin (Cottus cognatus) present, and lakes with slimy sculpin present along with burbot (Lota Iota) and lake trout (Salvelinus namaycush). Samples were collected by coring bare sediment habitats in 4 systems of each type near the Toolik Lake field station in northern Alaska. Lakes with burbot and lake trout present in addition to slimy sculpin displayed significantly higher (P<0.05) biomass, density, richness, and diversity. This is likely due to the increased complexity of the predator regime. Ponds without fish had a significantly greater percentage of predacious chironomids present.  相似文献   

12.
Small fish communities were compared between the vegetated and vegetation-free regions of the Liangzi Lake, a shallow lake along the middle reach of the Yangtze River, China. Fish were sampled using 10 × 10 m2 block nets and poisoning. Three samples were taken from either the near shore area or lake centre of each region. A total of 19 fish species were collected; all species occurred in the vegetated region but only 12 occurred in the vegetation-free region. The dominant small fish were Carassius auratus auratus in the vegetated region and Ctenogobius giurinus in the vegetation-free region. Diversity, density and biomass of small fishes were significantly higher in the vegetated region than in the vegetation-free region in both near shore and lake centre areas. In the vegetated region, density and biomass of small fishes was significantly higher, while species diversity significantly lower in the near shore area than in the lake centre. In the vegetation-free region, density of small fishes was significantly higher in the near shore area than in the lake centre area, but species diversity or biomass was unaffected by location.  相似文献   

13.
马鞍列岛岩礁生境鱼类群落结构时空格局   总被引:2,自引:0,他引:2  
汪振华  赵静  王凯  章守宇 《生态学报》2013,33(19):6218-6226
基于2009年马鞍列岛潮下带岩礁生境的多网目三层组合刺网逐月调查数据,对鱼类群落月相和季度间的变化、区域尺度上的空间差异和群落的稳态进行了探讨,应用优势种相对丰度和生物量、定居性鱼类和洄游种的季节动态、非度量多维标度(nMDS)和生物量丰度曲线(ABC)分析方法对群落时空格局进行了分析。结果显示:季节性洄游种集中出现在夏秋季,但对岩礁生境的利用表现出不同区域的强度差异;小黄鱼Larimichthys polyactis和黄姑鱼Nibea albiflora周年利用岩礁生境,但强度有别,尤其在冬季;定居性鱼类褐菖鲉Sebastiscus marmoratus、斑头鱼Agrammus agrammus和大泷六线鱼Hexagrammos otakii在春末夏初的种群密度最高,同样表现出某些或大部分月份的区域差异;而河口种中国花鲈Lateolabrax maculatus则更多地选择秋冬季出现在岩礁生境。多元分析结果揭示了当地岩礁生境鱼类群落格局上显著的季节和区域差异,这是定居性鱼类对岩礁生境利用的阶段性变化和区域差异、结合洄游种季节迁移和选择性分布等因素作用下共同形成的格局。ABC分析进一步发现,丰富的鱼类生态类型形成了夏季岩礁生境更为稳定的群落状态,而冬季相反;同时各季度A区的群落干扰明显强过B区。研究表明,产卵季节海域西北部的岩礁生境很可能起着主要的产卵场功能,而东南部区域各季度皆侧重于幼鱼育肥场的功能表达。丰富的种类区系加之优势种的季节性交替出现,共同塑造了岩礁生境极具动态的鱼类群落格局,对维持岛礁海域鱼类多样性以及局部区域生态系统的稳定性起着非常重要的作用。  相似文献   

14.
The spatial scale and density‐dependent effects of non‐native brown trout Salmo trutta on species richness of fish assemblages were examined at 48 study sites in Mamachi Stream, a tributary of Chitose River, Hokkaido, Japan. The density of age ≥1 year S. trutta was high in the upstream side of the main stem of Mamachi Stream. Fish species richness increased with increasing area of study sites (habitat size), but the increasing magnitude of the species richness with area decreased with increasing age of ≥1 year S. trutta density. The relationships between age ≥1 year S. trutta, however, and presence–absence of each species seemed to be different among species. Species richness was also determined by location and physical environmental variables, i.e. it was high on the downstream side and in structurally complex environments.  相似文献   

15.
The assemblage of littoral oligochaetes in six crater lakes in Central Mexico, was studied throughout a yearly cycle. To establish species composition, richness, density and biomass, 14 localities were sampled in the lakes. A total of eight species belonging to the families Naididae (five species), Tubificidae (two species), and Enchytraeidae (one species) were found. The dominant species, Limnodrilus hoffmeisteri, contributed with up to 99% in both abundance and biomass. Sediment organic matter is the most important environmental variable explaining the differences in density and biomass. Seasonal (dry and rainy seasons) changes were not significant for density and biomass. Higher density and lower biomass values characterized these lakes in contrast to other tropical and subtropical lakes worldwide. The small size of the dominant species L. hoffmeisteri was recorded in all lakes and explained the low biomass recorded in the area of study. The correlation between L. hoffmeisteri and four other species (Dero (Dero) nivea, D. (D.) digitata, Nais variabilis and Tubifex tubifex) was negative. The naidid species were positively correlated (>0.5) to each other.  相似文献   

16.
Fish assemblages utilising saltmarsh and mangrove during spring tides were surveyed over a 12-month period using buoyant pop nets. A total of 48 net releases in the saltmarsh identified 16 species, at a density of 0.56 fish m−2, with six species being of commercial importance. The same number of releases within the mangrove collected a total of 23 species at a density of 0.76 fish m−2. However, fish density was higher within the saltmarsh than the adjacent mangrove when corrected for water volume. Multidimensional scaling revealed different assemblages of fish in the two habitats, with higher numbers of Ambassis jacksoniensis and Pseudomugil sp. in the saltmarsh and higher numbers of Mugilogobius sp. and Acanthopagrus australis in the mangrove. The result suggests a potentially significant role for saltmarsh as a fish habitat in the estuaries of southeast Australia.  相似文献   

17.
Spehn  Eva M.  Joshi  Jasmin  Schmid  Bernhard  Alphei  Jörn  Körner  Christian 《Plant and Soil》2000,224(2):217-230
The loss of plant species from terrestrial ecosystems may cause changes in soil decomposer communities and in decomposition of organic material with potential further consequences for other ecosystem processes. This was tested in experimental communities of 1, 2, 4, 8, 32 plant species and of 1, 2 or 3 functional groups (grasses, legumes and non-leguminous forbs). As plant species richness was reduced from the highest species richness to monocultures, mean aboveground plant biomass decreased by 150%, but microbial biomass (measured by substrate induced respiration) decreased by only 15% (P = 0.05). Irrespective of plant species richness, the absence of legumes (across diversity levels) caused microbial biomass to decrease by 15% (P = 0.02). No effect of plant species richness or composition was detected on the microbial metabolic quotient (qCO2) and no plant species richness effect was found on feeding activity of the mesofauna (assessed with a bait-lamina-test). Decomposition of cellulose and birchwood sticks was also not affected by plant species richness, but when legumes were absent, cellulose samples were decomposed more slowly (16% in 1996, 27% in 1997, P = 0.006). A significant decrease in earthworm population density of 63% and in total earthworm biomass by 84% was the single most prominent response to the reduction of plant species richness, largely due to a 50% reduction in biomass of the dominant `anecic' earthworms. Voles (Arvicola terrestris L.) also had a clear preference for high-diversity plots. Soil moisture during the growing season was unaffected by plant species richness or the number of functional groups present. In contrast, soil temperature was 2 K higher in monocultures compared with the most diverse mixtures on a bright day at peak season. We conclude that the lower abundance and activity of decomposers with reduced plant species richness was related to altered substrate quantity, a signal which is not reflected in rates of decomposition of standard test material. The presence of nitrogen fixers seemed to be the most important component of the plant diversity manipulation for soil heterotrophs. The reduction in plant biomass due to the simulated loss of plant species had more pronounced effects on voles and earthworms than on microbes, suggesting that higher trophic levels are more strongly affected than lower trophic levels.  相似文献   

18.
长江安庆新洲水域鱼类群落结构及多样性   总被引:6,自引:0,他引:6  
沙洲水域环境良好,饵料资源丰富,栖息生境多样,为鱼类的生长繁殖提供了优良的生存环境。为了解长江安庆新洲水域鱼类群落结构特征,于2017年4月、7月、10月和12月对安庆江段新洲水域鱼类群落进行季节性调查。共采集鱼类64种,分属5目11科48属,其中62.5%为鲤科鱼类。以物种数和多样性指数分析群落多样性特征,结果表明新洲水域鱼类种类多样性水平较高。单因素方差分析表明,该群落多样性季节差异显著(P0.05),空间差异不明显。新洲水域鱼类群落优势种为鳊(Parabramis pekinensis Basilewsky, 1855)、鲤(Cyprinus carpio Linnaeus, 1758)、贝氏■(Hemiculter bleekeri Warpachowsky, 1887)、银鮈(Squalidus argentatus Sauvage et Dabry, 1874)和似鳊(Pseudobrama simoni Bleeker, 1864)。4种摄食功能群中,杂食性(42.19%)和肉食性(35.94%)鱼类物种数比例较高;3种生态类群中,淡水定居性鱼类占绝对优势(84.37%);3种栖息水层类型中,底层鱼类物种数比例较高,占37.50%。大型经济鱼类占总渔获物比例低(0.01%),但个体较大,因而相对重要性指数(IRI)高。总体上,新洲鱼类群落多样性和丰富度指数较高,均匀度指数偏低,个体小型化趋势明显。捕捞强度过大、水利工程建设导致的江湖阻隔及外来物种入侵是新洲水域渔业资源衰退的主要因素。由此,建议持续开展长江渔业资源监测,加强长江干流沙洲水域渔业资源保护。  相似文献   

19.
We performed an experimental manipulation of trahira Hoplias aff. malabaricus in a series of isolated lakes of the upper Paraná River floodplain to evaluate its short-term impact on the structure of fish assemblages. The effects of trahira density (treatment groups: addition, removal, and reference) in two habitat categories (open and macrophyte-covered areas) on attributes of the fish assemblage structure were evaluated (using rm-ANOVA) over 120 days. Reductions in species richness were recorded in all assemblages and were more pronounced at the end of the experiment within macrophyte-covered areas of the lakes where H. aff. malabaricus was removed. In these lakes, the number of fish was also significantly smaller and evenness was significantly higher than in those in which trahira were added or maintained at natural densities. The increase of the relative abundance of all size classes over the first 60 days on the assemblages where trahira was present, and the decrease of the small-sized fish where trahira was absent contributed to the lack of pronounced alterations in total biomass. The absence of the predator from its preferred habitat was found to negatively affect the less abundant species, which seemed to be highly sensitive to the effects of interspecific competition among prey species. In addition to the well-known effects of hydrological seasonality, the role played by native predators might be important in determining the persistence of local species in the fish assemblages of Neotropical floodplains.  相似文献   

20.
Seasonal changes of fish species composition in terms of biomass, density and number of species in three areas of the main channel of the Paranaguá Estuary (axis east–west) are described in relation to seasonal fluctuations in salinity, water temperature and dissolved oxygen in the main channel. Two hundred and thirty‐four samples were collected monthly, between July 2000 and June 2001, in the main channel. Seventy‐nine species of 29 families were captured with a total estimated mean density and biomass of 1513 individuals ha?1 and 34 kg ha?1, respectively. The number of species and total mean density differed significantly among areas and seasons, but the total mean biomass differed only significantly throughout the ecocline (areas) of the Paranaguá Estuary. For the most abundant species, the mean densities of Stellifer rastrifer, Aspistor luniscutis, Menticirrhus americanus, Sphoeroides testudineus, Cynoscion leiarchus and Symphurus tesselatus (with the exception of Cathorops spixii and Genidens genidens) differed significantly among seasons. The mean biomass of these species, with the exception of G. genidens, S. rastrifer, A. luniscutis and S. testudineus, also differed significantly for the factor seasons. Area was a significant factor for the eight most abundant species (density and biomass), except S. testudineus (density), G. genidens, C. leiarchus and S. tesselatus (biomass). The season v. area interaction term was significant for C. leiarchus (density). Most of these differences occurred during the rainy season when fishes concentrated principally in the middle of the estuary, where the salinity remained stable. It is suggested that the salinity stability in the middle of the estuary is the main reason why the most estuarine resident fish species move downstream and remain there, regardless of the increased freshwater runoff. Moreover, canonical correspondent analysis output detected that during the late rainy season, the variable dissolved oxygen (P < 0·01) was the most important environmental variable, responsible for structuring patterns of fishes assemblages in the west–east axis of Paranaguá Estuary. During the end of the dry season, both salinity (P < 0·01) and dissolved oxygen (P < 0·05) were responsible for this ecological feature in the estuary. Finally, it was possible to detect that juveniles and adults of some important species respond differently to seasonal fluctuations of the ecocline‐determining environmental factors. This behaviour is suggested as a strategy to avoid competition and predation during the rainy season in the middle estuary. The Paranaguá Estuary did not fit with the pre‐existing models described in the tropical and subtropical estuarine fish literature since its main channel fish assemblages remained within its bounds even during the rainy season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号