首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Monitoring at fortnightly to monthly intervals of a very shallow, lowland lake over 24 years has enabled the time course of recovery from nutrient enrichment to be investigated after high external P loading of the lake (>10 g P m?2 year?1) was reduced between 1977 and 1980. 2. The lake showed a relatively rapid response during the spring and early summer, with a reduction in phytoplankton biomass occurring after 5 years when soluble reactive phosphorus concentration was <10 μg L?1. 3. However, during the later summer the response was delayed for 15 years because of sustained remobilisation of phosphorus from the sediment. The greater water clarity in spring and a gradual shift from planktonic to benthic algal growth may be related to the reduction in internal loading after 15 years. 4. Changes in the phytoplankton community composition were also observed. Centric diatoms became less dominant in the spring, and the summer cyanobacteria populations originally dominated by non‐heterocystous species (Limnothrix/Planktothrix spp.) almost disappeared. Heterocystous species (Anabaena spp. and Aphanizomenon flosaquae) were slower to decline, but after 20 years the phytoplankton community was no longer dominated by cyanobacteria. 5. There were no substantial changes in food web structure following re‐oligotrophication. Total zooplankton biomass decreased but body size of Daphnia hyalina, the largest zooplankton species in the lake, remained unchanged, suggesting that the fish population remained dominated by planktivorous species. 6. Macrophyte growth was still largely absent after 20 years, although during the spring water clarity may have become sufficient for macrophytes to re‐establish.  相似文献   

2.
A comprehensive study of phyto- and zooplankton and macrozoobenthic components in Lake Nainital showed that species richness was high for plankton and low for macrozoobenthos. The algal biomass was dominated by greens (54 %) and blue-greens (31 %), the zooplankton population by copepods (84 %), and the macrozoobenthic community by a Tubifex-Chironomus association constituting≥95 % of the annual number of the macrobenthic invertebrates. Respiration (807.5g C m−2 year−1) surpassed gross production (630.5 g C m−2 year−1). The mean annual ratio between phyto- and zooplankton biomass is 3.3 and between phytoplankton and herbivores it is 4.6. If biomass is treated as a measure of crude production, the relationship among the three trophic levels suggests that herbivory is inefficient while carnivory is efficient, because part of the primary production remains unutilized by dominant herbivorous zooplankters, whereas Mesocyclops leuckarti, the sole carnivore, feeds efficiently on rotifers and juveniles of other copepods. The low diversity of different biotic components and the P/R ratio of less than 1 perhaps suggest that the lake is passing through the stage of heterotrophic succession.  相似文献   

3.
1. The inter‐ and intra‐annual changes in the biomass, elemental (carbon (C), nitrogen (N) and phosphorus (P)) and taxonomical composition of the phytoplankton in a high mountain lake in Spain were studied during 3 years with different physical (fluctuating hydrological regime) and chemical conditions. The importance of internal and external sources of P to the phytoplankton was estimated as the amount of P supplied via zooplankton recycling (internal) or through ice‐melting and atmospheric deposition (external). 2. Inter‐annual differences in phytoplankton biomass were associated with temperature and total dissolved phosphorus. In 1995, phytoplankton biomass was positively correlated with total dissolved phosphorus. In contrast, the negative relationship between zooplankton and seston biomass (direct predatory effects) and the positive relationship between zooplankton P excretion and phytoplankton biomass in 1997 (indirect P‐recycling effects), reinforces the primary role of zooplankton in regulating the total biomass of phytoplankton but, at the same time, encouraging its growth via P‐recycling. 3. Year‐to‐year variations in seston C : P and N : P ratios exceeded intra‐annual variations. The C : P and N : P ratios were high in 1995, indicating strong P limitation. In contrast, in 1996 and 1997, these ratios were low during ice‐out (C : P < 100 and N : P < 10) and increased markedly as the season progressed. Atmospheric P load to the lake was responsible for the decline in C : P and N : P ratios. 4. Intra‐annual variations in zooplankton stoichiometry were more pronounced than the overall differences between 1995 and 1996. Thus, the zooplankton N : P ratio ranged from 6.9 to 40.1 (mean 21.4) in 1995, and from 10.4 to 42.2 (mean 24.9) in 1996. The zooplankton N : P ratio tended to be low after ice‐out, when the zooplankton community was dominated by copepod nauplii, and high towards mid‐ and late‐season, when these were replaced by copepodites and adults. 5. In 1995, the minimum demands for P of phytoplankton were satisfied by ice‐melting, atmospheric loading and zooplankton recycling over 100%. In order of importance, atmospheric inputs (> 1000%), zooplankton recycling (9–542%), and ice‐melting processes (0.37–5.16%) satisfied the minimum demand for P of phytoplankton during 1996 and 1997. Although the effect of external forces was rather sporadic and unpredictable in comparison with biologically driven recycle processes, both may affect phytoplankton structure and elemental composition. 6. We identified three conceptual models representing the seasonal phosphorus flux among the major compartments of the pelagic zone. While ice‐melting processes dominated the nutrient flow at the thaw, biologically driven processes such as zooplankton recycling became relevant as the season and zooplankton ontogeny progressed. The stochastic nature of P inputs associated with atmospheric events can promote rapid transitional changes between a community limited by internal recycling and one regulated by external load. 7. The elemental composition of the zooplankton explains changes in phytoplankton taxonomic and elemental composition. The elemental negative balance (seston N : P < zooplankton N : P, low N : P recycled) during the thaw, would promote a community dominated by species with a high demand for P (Cryptophyceae). The shift to an elemental positive balance (seston N : P > zooplankton N : P, high N : P recycled) in mid‐season would skew the N : P ratio of the recycled nutrients, favouring dominance by chrysophytes. The return to negative balance, as a consequence of the ontogenetic increase in zooplankton N : P ratio and the external P inputs towards the end of the ice‐free season, could alleviate the limitation of P and account for the appearance of other phytoplankton classes (Chlorophyceae or Dinophyceae).  相似文献   

4.
1. A 2‐year study was carried out on the roles of nutrients and fish in determining the plankton communities of a shallow lake in north‐west Spain. Outcomes were different each year depending on the initial conditions, especially of macrophyte biomass. In 1998 estimated initial ‘per cent water volume inhabited’ (PVI) by submerged macrophytes was about 35%. Phytoplankton biomass estimated as chlorophyll a was strongly controlled by fish, whereas effects of nutrient enrichment were not significant. In 1999 estimated PVI was 80%, no fish effect was observed on phytoplankton biomass, but nutrients had significant effects. Water temperatures were higher in 1998 than in 1999. 2. In the 1998 experiment, cladoceran populations were controlled by fish and cyanobacteria were the dominant phytoplankton group. There were no differences between effects of low (4 g fresh mass m?2) and high (20 g fresh mass m?2) fish density on total zooplankton biomass, but zooplankton biomass was higher in the absence of fish. With the high plant density in 1999, fish failed to control any group of the zooplankton community. 3. Total biovolume of phytoplankton strongly decreased with increased nutrient concentrations in 1998, although chlorophyll a concentrations did not significantly change. At higher nutrient concentrations, flagellate algae became more abundant with likely growth rates that could have overcompensated cladoceran feeding rates. This change in phytoplankton community composition may have been because of increases in the DIN : SRP ratio. Both chlorophyll a concentration and total phytoplankton biovolume increased significantly with nutrients in the 1999 experiment. 4. A strong decline of submerged macrophytes was observed in both years as nutrients increased, resulting in shading by periphyton. This shading effect could account for the plant decline despite lower water turbidity at the very high nutrient levels in 1998.  相似文献   

5.
The biomass and population dynamics of crustacean zooplankton were determined in oligotrophic Lake Toya in Japan over 5 years from May 1992 to May 1997. In 1992 and 1993, zooplankton biomass was up to 4.3 g dry weight m?2, whereas it decreased to <1 g dry weight m?2 after 1994. This extreme change in biomass was associated with the succession of dominant species from larger ones, such as Daphnia longispina and Cyclops strenuus (s. lat.), to smaller ones, such as Eubosmina tanakai and Bosmina longirostris. Consequently, this biomass change seemed to cause an increase in the chlorophyll a concentration in the euphotic zone and a decline in lake transparency. Because the birth rates of the dominant species were somewhat higher after 1994, the decline in the populations of larger crustaceans seemed to depend more on their rate of death rather than rate of birth, and this higher death rate is not considered to be attributed to food shortage. Although these results strongly suggest a top-down cascading effect of fish predation upon crustaceans, annual catches of two commercially important planktivorous fish species have also decreased in the lake, coincidentally with decreases in zooplankton biomass. This may be attributable to fishing regulations that prohibit catching smaller fish, implying that such smaller fish affect zooplankton and phytoplankton, as well as lake transparency.  相似文献   

6.
The seasonal changes in phytoplankton biomass and species diversity in a shallow, eutrophic Danish lake are described and related to different disturbance events acting on the phytoplankton community.Both the spring diatom maximum and the summer bloom of the filamentous blue-green alga, Aphanizomenon flos-aquae (L.) Ralfs, coincided with low values of phytoplankton species diversity and equitability. Diatom collapse was mainly due to internal modifications as nutrient depletion (Si, P) caused by rapid growth of phytoplankton, and increased grazing activity from zooplankton. A large population of Daphnia longispina O.F. Müller in June effectively removed smaller algal competitors, thus favouring the development of a huge summer bloom (140 mm3 l–1) of Aphanizomenon flos-aquae. Heavy rainfall and storms in late July increased the loss of Apahnizomenon by out-flow and disturbed the stratification of the lake. These events caused a marked decline in phytoplankton biomass but had no effect on species diversity. A second storm period in late August circulated the lake completely and was followed by a rapid increase in phytoplankton diversity, and a change in the phytoplankton community structure from dominance of large, slow-growing K-selected species (Aphanizomenon) to small, fast-growing r-selected species (cryptomonads).  相似文献   

7.
Distribution and abundance of phyto-, zooplankton and benthic organisms in Lake Qarun were investigated during the period from January 1974 to December 1977.Average number of phytoplankton cells was 152,300 cells/L and its biomass was 0.365 g/C/m3; average number of zooplankton was 31.44 × 103/m3 and its biomass was 194.19 mg/m3. The average number of benthic fauna was 19889/m2 and its biomass was 400.22 g/m2 (dry wt.). Therefore, Lake Qarun may be considered as a highly eutrophic body of water.Freshwater planktonic species, that used to inhabit the lake, such as Diaptomus salinus and the cladoceran Moina salinarum, disappeared completely when the salinity of the lake water reached 30–34 However, some Rotatoria were able to withstand the high salinity. The new composition of the zooplankton community shows that the marine zooplankton species include not only Acartia latisetosa and Cirripedia nauplii, but also other species such as Polychaeta, Obelia medusae, etc.The benthos of Lake Qarun is characterised by an intensive growth of few species. The major part (i.e. 93.54% by weight) of bottom fauna in the lake is Mollusca, mainly Cerastoderma glaucum (69·84% by weight).  相似文献   

8.
9.
The development and metabolism of epilimnetic plankton from a highly humic lake was followed in late summer, when the predominant zooplankton species, Daphnia longispina, was very abundant (ca. 200 ind. l?1). The experiment was made in two tanks: one with an unaltered plankton assemblage and one with larger zooplankton removed. The scarce phytoplankton community was also simple, consisting mainly of one Cryptomonas and two Mallomonas species. The abundance and species composition of smaller plankton was heavily influenced by grazing of Daphnia. In particular, the biomass, of heterotrophic flagellates increased after the removal of Daphnia. The biomass and production of bacterioplankton were not affected, and remained several times higher than that of phytoplankton. Bacterial production and grazing on bacteria were balanced, and when Daphnia was removed its grazing activity was compensated by flagellates. The removal of Daphnia did not affect the respiration or community net production of plankton. Among organisms smaller than zooplankton, bacteria seemed to be responsible for most of the respiration. The community net production was consistently negative even at the water surface, indicating an allochthonous carbon source. The results suggest that phytoplankton primary production was insufficient for the secondary production in the epilimnetic water of the study lake. The food requirements of bacteria and zooplankton, as well as of flagellates, each exceeded that supplied by phytoplankton primary production. The simple food chains in this experiment made it possible to reveal the functioning of the community so completely that dissolved organic matter is certainly comparable to or exceeds the importance of phytoplankton primary production as an energy and carbon source for food webs in this humic lake.  相似文献   

10.
Lake St. Clair phytoplankton and zooplankton abundance and composition was analyzed during the period of May to September 1984. In addition, size-fractionated primary productivity and other limnological parameters were measured. Highest phytoplankton biomass was observed during spring (May) with high values for the southern and southeastern regions of the lake. Seasonally, the mean phytoplankton biomass ranged between 0.17 and 1.18 g m-3 with high values recorded during spring (May, June) compared to summer. In the spring the phytoplankton was dominated by Diatomeae followed by Chrysophyceae and Cryptophyceae. During the summer the diatoms showed a decreasing trend due to the relative prevalence of Chrysophyceae, Cryptophyceae, and Chlorophyta. The species composition was oligotrophic-mesotrophic with mixed occurrence of some eutrophic species. The phytoplankton size composition indicated dominance of microplankton/netplankton (> 20 µm) and ultraplankton (< 20 µm) during spring and summer respectively. On an overall basis ultraplankton contributed overwhelmingly to primary productivity, as much as 75 percent in the summer.The mean zooplankton biomass ranged from 173.0 to 1306.0 mg l- dominated by Cladocerans (bosminids) in contrast to the other Great Lakes. Statistical evaluation of the phytoplankton — nutrient-contaminant interactions revealed positive correlations with heavy metals, suggestive of a physiological adaptation to contamination from the chemical valley. Based on low biomass, high Production/Biomass ratio, dominance of ultraplankton, characteristic species composition and plankton spectra, the lake appears to be an oligotrophic-mesotrophic perturbed ecosystem.  相似文献   

11.
Arvola  L.  Salonen  K. 《Hydrobiologia》2001,445(1-3):141-150
The impact of Daphnia longispina (Cladocera) on the plankton food web was studied in a polyhumic lake where this species comprised almost all zooplankton biomass. Plastic enclosures (volume 7 m3) were inserted into the lake retaining the initial water stratification except that in one enclosure zooplankton was removed. After the removal of Daphniaa rotifer, Keratella cochlearis, ciliates and heterotrophic nanoflagellates increased markedly and the density and biomass of bacteria decreased. Edible algal species, Cryptomonas rostratiformisand three small chrysophytes,Ochromonas, Pedinella and Spinifermonas, took advantage of the removal of Daphnia, while more grazing-resistant species declined. In spite of the changes in the species composition of phytoplankton, the removal of Daphnia did not affect the biomass, primary production or respiration of plankton. The results implied that the density of heterotrophic flagellates and ciliates was controlled by Daphnia, but in its absence the former took its role as the bacterial grazers.  相似文献   

12.
1. Nutrient and fish manipulations in mesocosms were carried out on food‐web interactions in a Mediterranean shallow lake in south‐east Spain. Nutrients controlled biomass of phytoplankton and periphyton, while zooplankton, regulated by planktivorous fish, influenced the relative percentages of the dominant phytoplankton species. 2. Phytoplankton species diversity decreased with increasing nutrient concentration and planktivorous fish density. Cyanobacteria grew well in both turbid and clear‐water states. 3. Planktivorous fish increased concentrations of soluble reactive phosphorus (SRP). Larger zooplankters (mostly Ceriodaphnia and copepods) were significantly reduced when fish were present, whereas rotifers increased, after fish removal of cyclopoid predators and other filter feeders (cladocerans, nauplii). The greatest biomass and diversity of zooplankton was found at intermediate nutrient levels, in mesocosms without fish and in the presence of macrophytes. 4. Water level decrease improved underwater light conditions and favoured macrophyte persistence. Submerged macrophytes (Chara spp.) outcompeted algae up to an experimental nutrient loading equivalent to added concentrations of 0.06 mg L?1 PO4‐P and 0.6 mg L?1 NO3‐N, above which an exponential increase in periphyton biomass and algal turbidity caused characean biomass to decline. 5. Declining water levels during summer favoured plant‐associated rotifer species and chroococcal cyanobacteria. High densities of chroococcal cyanobacteria were related to intermediate nutrient enrichment and the presence of small zooplankton taxa, while filamentous cyanobacteria were relatively more abundant in fishless mesocosms, in which Crustacea were more abundant, and favoured by dim underwater light. 6. Benthic macroinvertebrates increased significantly at intermediate nutrient levels but there was no relationship with planktivorous fish density. 7. The thresholds of nutrient loading and in‐lake P required to avoid a turbid state and maintain submerged macrophytes were lower than those reported from temperate shallow lakes. Mediterranean shallow lakes may remain turbid with little control of zooplankton on algal biomass, as observed in tropical and subtropical lakes. Nutrient loading control and macrophyte conservation appear to be especially important in these systems to maintain high water quality.  相似文献   

13.
Employingin situ enclosures containing inocula of the lake zooplankton (mainlyDaphnia galeata, Daphnia cucullata andBosmina spp.) from a moderately eutrophic Lake Ros (Northern Poland) or large-bodiedDaphina magna, the following observations on succession of phytoplankton were made: 1) whereasD. magna could control the density of all the photoplankton size classes, the lake zooplankton could not suppress the large-sized phytoplankters or net phytoplankton; 2) the lake zooplankton was able to control the density of small algae (< 50μm), but its effect on large algae may be opposite: a promotion of net phytoplankton growth by removing small-sized algae which can out-compete net phytoplankton for limited PO4-P resources (<5μg P l−1). Since efficiency of phytoplankton density control byD. magna decreased with an increase in net phytoplankton abundance, biomanipulation could not be successful without introducing or maintaining a high population of large-bodied cladoceran species before high densities of large algae would make the control of phytoplankton inefficient.  相似文献   

14.
1. This synthesis examines 35 long‐term (5–35 years, mean: 16 years) lake re‐oligotrophication studies. It covers lakes ranging from shallow (mean depth <5 m and/or polymictic) to deep (mean depth up to 177 m), oligotrophic to hypertrophic (summer mean total phosphorus concentration from 7.5 to 3500 μg L?1 before loading reduction), subtropical to temperate (latitude: 28–65°), and lowland to upland (altitude: 0–481 m). Shallow north‐temperate lakes were most abundant. 2. Reduction of external total phosphorus (TP) loading resulted in lower in‐lake TP concentration, lower chlorophyll a (chl a) concentration and higher Secchi depth in most lakes. Internal loading delayed the recovery, but in most lakes a new equilibrium for TP was reached after 10–15 years, which was only marginally influenced by the hydraulic retention time of the lakes. With decreasing TP concentration, the concentration of soluble reactive phosphorus (SRP) also declined substantially. 3. Decreases (if any) in total nitrogen (TN) loading were lower than for TP in most lakes. As a result, the TN : TP ratio in lake water increased in 80% of the lakes. In lakes where the TN loading was reduced, the annual mean in‐lake TN concentration responded rapidly. Concentrations largely followed predictions derived from an empirical model developed earlier for Danish lakes, which includes external TN loading, hydraulic retention time and mean depth as explanatory variables. 4. Phytoplankton clearly responded to reduced nutrient loading, mainly reflecting declining TP concentrations. Declines in phytoplankton biomass were accompanied by shifts in community structure. In deep lakes, chrysophytes and dinophytes assumed greater importance at the expense of cyanobacteria. Diatoms, cryptophytes and chrysophytes became more dominant in shallow lakes, while no significant change was seen for cyanobacteria. 5. The observed declines in phytoplankton biomass and chl a may have been further augmented by enhanced zooplankton grazing, as indicated by increases in the zooplankton : phytoplankton biomass ratio and declines in the chl a : TP ratio at a summer mean TP concentration of <100–150 μg L?1. This effect was strongest in shallow lakes. This implies potentially higher rates of zooplankton grazing and may be ascribed to the observed large changes in fish community structure and biomass with decreasing TP contribution. In 82% of the lakes for which data on fish are available, fish biomass declined with TP. The percentage of piscivores increased in 80% of those lakes and often a shift occurred towards dominance by fish species characteristic of less eutrophic waters. 6. Data on macrophytes were available only for a small subsample of lakes. In several of those lakes, abundance, coverage, plant volume inhabited or depth distribution of submerged macrophytes increased during oligotrophication, but in others no changes were observed despite greater water clarity. 7. Recovery of lakes after nutrient loading reduction may be confounded by concomitant environmental changes such as global warming. However, effects of global change are likely to run counter to reductions in nutrient loading rather than reinforcing re‐oligotrophication.  相似文献   

15.
Studies have shown a strong linkage between zooplankton and fisheries' potential in tropical lakes. High zooplankton production provides the basis for fish production, but knowledge of zooplankton production dynamics in African lakes is extremely limited. Crustacean zooplankton production and the biomass of dominant rotifers in Lake Bosumtwi were assessed over a 2‐year period. The crustaceans comprised an endemic and extremely abundant cyclopoid copepod, Mesocyclops bosumtwii and the cladoceran Moina micrura. Mean standing stock of the crustaceans was 429 mg dw m?3, whilst annual production averaged 2.1 g dw m?3 y?1. Production doubled from 1.4 g dw m?3 y?1 in 2005 to 2.8 g dw m?3 y?1 in 2006. Copepods accounted for 98.5% of crustacean production. The biomass of the dominant rotifers Brachionus calyciflorus and Hexarthra intermedia was less than 1% of total zooplankton biomass. Daily turnover rate and turnover time of the crustaceans was 0.19 day?1 and 6.2 days respectively. Crustacean production yielded no statistical relationship with phytoplankton biomass. Production was well within the range of tropical lakes. Peak crustacean production synchronized maximum rainfall, lake mixing and phytoplankton production. Most importantly, no one year's set of dynamics can be used to characterize zooplankton production in the lake.  相似文献   

16.
The community composition and the factors affecting seasonal and interannual dynamics of zooplankton in Lake Bosumtwi were studied biweekly at a central index station during 2005 and 2006. The lake zooplankton community was species poor. Mesocyclops bosumtwii was numerically superior seasonally and interannually and was endemic to the lake. Minor constituents included Moina micrura, six rotifer species (except for Hexarthra intermedia) and Chaoborus ceratopogones larvae. Low variance of cyanobacteria-dominated phytoplankton biomass underlined stable zooplankton community structure. Emergence of rare species of rotifers occurred seasonally. The climatic signature on the lake’s stratification and mixing regime was strongly influenced by atmospheric temperature, but weakly by wind strength, because of sheltering of the lake by high crater walls. Increasing mixing depth entrained high TP concentrations from below the thermocline seasonally, but reflected poorly in the phytoplankton biomass behaviour. Total zooplankton abundance did not differ seasonally, but varied markedly from year to year in its timing and magnitude. Herbivores were squeezed between food limitation and high predation pressure from Chaoborus all year round. The low fish planktivory (high fishing pressure) on Chaoborus may create a trophic bottleneck restricting energy transfer efficiency from zooplankton to fish.  相似文献   

17.
Crustacean zooplankton data were compiled from long-term observational studies at seven large shallow Florida lakes, to determine whether there are general characteristics in regard to species composition, body size, and biomass. In particular, we examined whether patterns in body size and species richness fit empirical models developed by Stanley Dodson. The lakes included range in size from 125 to 1730 km2 and encompass mesotrophic to hyper-eutrophic conditions. We found that zooplankton biomass was strongly dominated by one species of calanoid copepod—Arctodiaptomus dorsalis. Large daphnids were absent, and Cladocera assemblages were dominated by small taxa such as Ceriodaphnia, Chydorus, and Eubosmina. The total number of species of pelagic cladocerans (8–12) was consistent with Dodson’s predictions based on lake area. The average size of crustacean zooplankton in Florida lakes is small in comparison with temperate communities. A. dorsalis is the smallest calanoid copepod in North America, and the mean length of Cladocera (0.6 mm) is consistent with Dodson’s results that size decreases from temperate to tropical zones. Total biomass of crustacean zooplankton was very low, ratios of zooplankton to phytoplankton biomass (0.01–0.1) are among the lowest reported in the literature, and the zooplankton displayed short-lasting early spring peaks in biomass. Cladocera were almost entirely absent in spring and summer. Factors known to occur in Florida lakes, which appear to explain these characteristics of biomass, include intense fish predation and high summer water temperature.  相似文献   

18.
Since 1983 severe phytoplankton collapses have occurred 1–4 times every summer in the shallow and hypertrophic Lake Søbygård, which is recovering after a ten-fold decrease of the external phosphorus loading in 1982. In July 1985, for example, chlorophyll a changed from 650 µg l–1 to about 12 µg 1–1 within 3–5 days. Simultaneously, oxygen concentration dropped from 20–25 mg O2l–1 to less than 1 mg O2l–1, and pH decreased from 10.7 to 8.9. Less than 10 days later the phytoplankton biomass had fully recovered. During all phytoplankton collapses the density of filter-feeding zooplankton increased markedly, and a clear-water period followed. Due to marked changes in age structure of the fish stock, different zooplankton species were responsible for the density increase in different years, and consequently different collapse patterns and frequencies were observed.The sudden increase in density of filter-feeding zooplankton from a generally low summer level to extremely high levels during algae collapses, which occurred three times from July 1984 to June 1986, could neither be explained by changes in regulation from below (food) nor from above (predation). The density increase was found after a period with high N/P ratios in phytoplankton or nitrate depletion in the lake. During that period phytoplankton biomass, primary production and thus pH decreased, the latter from 10.8–11.0 to 10.5. We hypothesize that direct or indirect effects of high pH are important in controlling the filter-feeding zooplankton in this hypertrophic lake. Secondarily, this situation affects the trophic interactions in the lake water and the net internal loading of nutrients. Consequently, not only a high content of planktivorous fish but also a high pH may promote uncoupling of the grazing food-web in highly eutrophic shallow lakes, and thereby enhance eutrophication.A tentative model is presented for the occurrence of collapses, and their pattern in hypertrophic lakes with various fish densities.  相似文献   

19.
The species composition, biomass, abundance and species diversity of zooplankton were determined for samples collected from 12 stations in Sanmen Bay, China, in four cruises from August 2002 to May 2003. Growth of phytoplankton and grazing rates of microzooplankton were measured using the dilution technique. The spatial and temporal variation of zooplankton and its relationship with environmental factors were also analyzed. The results showed that a total of 89 species of zooplankton belonging to 67 genera and 16 groups of pelagic larvae were found in Sanmen Bay. The coastal low-saline species was the dominant ecotype in the study area, and the dominant species were Calanus sinicus, Labidocera euchaeta, Tortanus derjugini, Acartia pacifica, Pseudeuphausia sinica and Sagitta bedoti. Maximum biomass was recorded in August, followed by November and May, and the lowest biomass was recorded in February. Similarly, the highest abundance of zooplankton was observed in August, followed by May, November, and February. Grazing pressure of microzooplankton on phytoplankton in Sanmen Bay existed throughout the year, although the grazing rate of microzooplankton on phytoplankton varied with the season. Estimates for growth rate of phytoplankton ranged from 0.25 d−1 to 0.89 d−1, whereas grazing rate of microzooplankton ranged between 0.18 d−1 and 0.68 d−1 in different seasons. The growth rate of phytoplankton exceeded the grazing rate of microzooplankton in all the seasons. Grazing pressure of microzooplankton on phytoplankton ranged from 16.1% d−1 to 49.1% d−1, and the grazing pressure of microzooplankton on primary production of phytoplankton ranged from 58.3% d−1 to 83.6% d−1 in different seasons.  相似文献   

20.
1. In view of the paucity of data on the response of warm shallow lakes to reductions in nutrient loading, this paper presents a long‐term limnological data set to document changes in the food‐web of a shallow Mediterranean lake (Lake Albufera, Valencia, Spain) that has experienced reductions in phosphorus (P) (77%) and nitrogen (N) (24%) loading following sewage diversion. 2. Nine years after sewage diversion, P concentration in the lake was reduced by 30% but remained high (TP = 0.34 mg L?1), although the mean water retention time in the lake was only 0.1 years. Nitrate concentrations did not significantly change, probably because the lake continued to receive untreated effluents from ricefields. 3. Chlorophyll a concentration was reduced by half (annual mean of 180 μg L?1). Cyanobacteria abundance remained high but its composition changed towards smaller species, both filamentous and chroococcal forms. 4. Cladocera abundance increased and reached peaks twice a year (December to March and July to September). After nutrient reduction, short‐term clear‐water phases (up to 5 weeks) occurred during February to March in several years, concomitant with annual flushing of the lake and lower fish densities. The abundance of Cladocera in winter contrasted with the spring peaks observed in northern restored shallow lakes. The zooplankton to phytoplankton biomass ratio remained lower than in northern temperate shallow lakes, probably because of fish predation on zooplankton. 5. Improvement of the water quality of Lake Albufera remained insufficient to counteract littoral reed regression or improve underwater light allowing submerged plants re‐colonise the lake. 6. Sewage diversion from Lake Albufera impacted the food web through the plankton, but higher trophic levels, such as fish and waterfowl, were affected to a lesser degree. Although the fish species present in the lake are mainly omnivorous, long‐term data on commercial fish captures indicated that fish communities changed in response to nutrient level and trophic structure as has been observed in restored shallow lakes at northern latitudes. 7. Phosphorus concentrations produced similar phytoplankton biomass in Lake Albufera as in more northern shallow lakes with abundant planktivorous fish and small zooplankton. However, in Lake Albufera, high average concentrations were maintained throughout the year. Overall, results suggest that nutrient control may be a greater priority in eutrophicated warm shallow lakes than in similar lakes at higher latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号