首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The localization of metabolites on plant surfaces has been problematic because of the limitations of current methodologies. Attempts to localize glucosinolates, the sulfur‐rich defense compounds of the order Brassicales, on leaf surfaces have given many contradictory results depending on the method employed. Here we developed a matrix‐assisted laser desorption–ionization (MALDI) mass spectrometry protocol to detect surface glucosinolates on Arabidopsis thaliana leaves by applying the MALDI matrix through sublimation. Quantification was accomplished by spotting glucosinolate standards directly on the leaf surface. The A. thaliana leaf surface was found to contain approximately 15 nmol of total glucosinolate per leaf with about 50 pmol mm?2 on abaxial (bottom) surfaces and 15–30 times less on adaxial (top) surfaces. Of the major compounds detected, 4‐methylsulfinylbutylglucosinolate, indol‐3‐ylmethylglucosinolate, and 8‐methylsulfinyloctylglucosinolate were also major components of the leaf interior, but the second most abundant glucosinolate on the surface, 4‐methylthiobutylglucosinolate, was only a trace component of the interior. Distribution on the surface was relatively uniform in contrast to the interior, where glucosinolates were distributed more abundantly in the midrib and periphery than the rest of the leaf. These results were confirmed by two other mass spectrometry‐based techniques, laser ablation electrospray ionization and liquid extraction surface analysis. The concentrations of glucosinolates on A. thaliana leaf surfaces were found to be sufficient to attract the specialist feeding lepidopterans Plutella xylostella and Pieris rapae for oviposition. The methods employed here should be easily applied to other plant species and metabolites.  相似文献   

2.
Internally feeding herbivorous insects such as leaf miners have developed the ability to manipulate the physiology of their host plants in a way to best meet their metabolic needs and compensate for variation in food nutritional composition. For instance, some leaf miners can induce green‐islands on yellow leaves in autumn, which are characterized by photosynthetically active green patches in otherwise senescing leaves. It has been shown that endosymbionts, and most likely bacteria of the genus Wolbachia, play an important role in green‐island induction in the apple leaf‐mining moth Phyllonorycter blancardella. However, it is currently not known how widespread is this moth‐Wolbachia‐plant interaction. Here, we studied the co‐occurrence between Wolbachia and the green‐island phenotype in 133 moth specimens belonging to 74 species of Lepidoptera including 60 Gracillariidae leaf miners. Using a combination of molecular phylogenies and ecological data (occurrence of green‐islands), we show that the acquisitions of the green‐island phenotype and Wolbachia infections have been associated through the evolutionary diversification of Gracillariidae. We also found intraspecific variability in both green‐island formation and Wolbachia infection, with some species being able to form green‐islands without being infected by Wolbachia. In addition, Wolbachia variants belonging to both A and B supergroups were found to be associated with green‐island phenotype suggesting several independent origins of green‐island induction. This study opens new prospects and raises new questions about the ecology and evolution of the tripartite association between Wolbachia, leaf miners, and their host plants.  相似文献   

3.
Life‐history traits of invasive exotic plants are typically considered to be exceptional vis‐à‐vis native species. In particular, hyper‐fecundity and long range dispersal are regarded as invasive traits, but direct comparisons with native species are needed to identify the life‐history stages behind invasiveness. Until recently, this task was particularly problematic in forests as tree fecundity and dispersal were difficult to characterize in closed stands. We used inverse modelling to parameterize fecundity, seed dispersal and seedling dispersion functions for two exotic and eight native tree species in closed‐canopy forests in Connecticut, USA. Interannual variation in seed production was dramatic for all species, with complete seed crop failures in at least one year for six native species. However, the average per capita seed production of the exotic Ailanthus altissima was extraordinary: > 40 times higher than the next highest species. Seed production of the shade tolerant exotic Acer platanoides was average, but much higher than the native shade tolerant species, and the density of its established seedlings (≥ 3 years) was higher than any other species. Overall, the data supported a model in which adults of native and exotic species must reach a minimum size before seed production occurred. Once reached, the relationship between tree diameter and seed production was fairly flat for seven species, including both exotics. Seed dispersal was highly localized and usually showed a steep decline with increasing distance from parent trees: only Ailanthus altissima and Fraxinus americana had mean dispersal distances > 10 m. Janzen‐Connell patterns were clearly evident for both native and exotic species, as the mode and mean dispersion distance of seedlings were further from potential parent trees than seeds. The comparable intensity of Janzen‐Connell effects between native and exotic species suggests that the enemy escape hypothesis alone cannot explain the invasiveness of these exotics. Our study confirms the general importance of colonization processes in invasions, yet demonstrates how invasiveness can occur via divergent colonization strategies. Dispersal limitation of Acer platanoides and recruitment limitation of Ailanthus altissima will likely constitute some limit on their invasiveness in closed‐canopy forests.  相似文献   

4.
We compared community composition, density, and species richness of herbivorous insects on the introduced plant Solidago altissima L. (Asteraceae) and the related native species Solidago virgaurea L. in Japan. We found large differences in community composition on the two Solidago species. Five hemipteran sap feeders were found only on S. altissima. Two of them, the aphid Uroleucon nigrotuberculatum Olive (Hemiptera: Aphididae) and the scale insect Parasaissetia nigra Nietner (Hemiptera: Coccidae), were exotic species, accounting for 62% of the total individuals on S. altissima. These exotic sap feeders mostly determined the difference of community composition on the two plant species. In contrast, the herbivore community on S. virgaurea consisted predominately of five native insects: two lepidopteran leaf chewers and three dipteran leaf miners. Overall species richness did not differ between the plants because the increased species richness of sap feeders was offset by the decreased richness of leaf chewers and leaf miners on S. altissima. The overall density of herbivorous insects was higher on S. altissima than on S. virgaurea, because of the high density of the two exotic sap feeding species on S. altissima. We discuss the importance of analyzing community composition in terms of feeding guilds of insect herbivores for understanding how communities of insect herbivores are organized on introduced plants in novel habitats.  相似文献   

5.
Leaf surface wetness that occurs frequently in natural environments has a significant impact on leaf photosynthesis. However, the physiological mechanisms for the photosynthetic responses to wetness are not well understood. The responses of leaf CO2 assimilation rate (A) to 72 h of artificial mist of a wettable (bean; Phaseolus vulgaris) and a non‐wettable species (pea; Pisum sativum) were compared. Stomatal and non‐stomatal limitations to A were investigated. A 28% inhibition of A was observed in the bean leaves as a result of a 16% decrease in stomatal conductance and a 55% reduction in the amount of Rubisco. The decrease of Rubisco was mainly due to its partial degradation. In contrast to the bean leaves, a 22% stimulation of A was obtained in the 72 h mist‐treated pea leaves. Mist treatment increased stomatal conductance by 12.5% and had no effect on the amount of Rubisco. These results indicated that a positive photosynthetic response to wetness occurred only in non‐wettable species and is due to the change in stomatal regulation.  相似文献   

6.
Abstract The warty birch caterpillar Drepana bilineata produces two distinct types of vibrational signals (mandible drumming and anal scraping) during interactions with conspecifics. Vibrational signalling is characterized using standard and high‐speed videography synchronized with laser‐doppler vibrometry, and behavioural experiments test the hypothesis that signalling functions to advertise occupancy of birch (Betula) leaves. Drumming involves raising the head and striking the leaf with the sharp edges of the open mandibles. Anal scraping involves dragging a pair of specialized oar‐shaped setae against the leaf surface. Staged encounters between leaf residents and conspecific intruders result in the resident signalling, with rates increasing as the intruder moves closer. Intruders signal significantly less often than residents. Conflicts are typically resolved within a few minutes, with the resident winning in 61% of the trials, and the intruder winning in 6%. Contests that last more than 30 min are deemed ‘ties’ and comprise the remaining 33% of trials. The results support the hypothesis that vibrational signals function to advertise leaf occupancy. Vibrational communication is believed to be widespread in Drepanoidea caterpillars, but has only been described in two species to date: D. bilineata (present study) and Drepana arcuata. It is proposed that differences in territorial behaviour and signalling between these species are related to their relative investments in silk leaf mats and shelters. The proximate and ultimate bases for the evolution of vibrational communication in caterpillars are discussed.  相似文献   

7.
1. The aphid Uroleucon nigrotuberculatum Olive, which is specialised to the tall goldenrod, Solidago altissima L., in its native range, has become a dominant species on the introduced tall goldenrod in Japan. How this exotic aphid influenced arthropod communities on the introduced tall goldenrod in aphid‐present (spring) and aphid‐absent (autumn) seasons was examined, using an aphid removal experiment. 2. In spring, aphid presence increased ant abundance because aphid honeydew attracted foraging ant workers. A significant negative correlation was found between the numbers of ants and herbivorous insects other than aphids on the aphid‐exposed plants, but no significant correlation was detected on the aphid‐free plants. Thus, the aphid presence was likely to decrease the abundance of co‐occurring herbivorous insects through removal behaviour of the aphid‐tending ants. There were no significant differences in plant traits between the aphid‐exposed and aphid‐free plants. 3. In autumn, the numbers of lateral shoots and leaves, and the leaf nitrogen content were increased in response to the aphid infestation in spring. Because of the improvement of plant traits by aphid feeding, the abundance of leaf chewers increased on aphid‐exposed plants. In contrast, the abundance of sap feeders decreased on the aphid‐exposed plants. In particular, the dominant scale insect among sap feeders, Parasaissetia nigra Nietner, decreased, followed by a decrease in the abundance of ants attending P. nigra. Thus, aphid feeding may have attenuated the negative impacts of the tending ants on leaf chewers. 4. Aphid presence did not change herbivore species richness but changed the relative density of dominant herbivores, resulting in community‐wide effects on co‐occurring herbivores through ant‐mediated indirect effects, and on temporally separated herbivores through plant‐ and ant‐mediated indirect effects. The aphid also altered predator community composition by increasing and decreasing the relative abundance of aphid‐tending ants in the spring and autumn, respectively.  相似文献   

8.
  • Ethylene and nitric oxide (NO) act as endogenous regulators during leaf senescence. Levels of ethylene or its precursor 1‐aminocyclopropane‐1‐carboxylate acid (ACC) depend on the activity of ACC synthases (ACS), and NO production is controlled by NO‐associated 1 (NOA1). However, the integration mechanisms of ACS and NOA1 activity still need to be explored during leaf senescence.
  • Here, using experimental techniques, such as physiological and molecular detection, liquid chromatography‐tandem mass spectrometry and fluorescence measurement, we investigated the relevant mechanisms.
  • Our observations showed that the loss‐of‐function acs1‐1 mutant ameliorated age‐ or dark‐induced leaf senescence syndrome, such as yellowing and loss of chlorophyll, that acs1‐1 reduced ACC accumulation mainly in mature leaves and that acs1‐1‐promoted NOA1 expression and NO accumulation mainly in juvenile leaves, when compared with the wild type (WT). But the leaf senescence promoted by the NO‐deficient noa1 mutant was not involved in ACS1 expression. There was a similar sharp reduction of ACS1 and NOA1 expression with the increase in WT leaf age, and this inflection point appeared in mature leaves and coincided with the onset of leaf senescence.
  • These findings suggest that NOA1‐dependent NO accumulation blocked the ACS1‐induced onset of leaf senescence, and that ACS1 activity corresponds to the onset of leaf senescence in Arabidopsis.
  相似文献   

9.
Heterotrophic nitrogen fixation is a key ecosystem process in unpolluted, temperate old‐growth forests of southern South America as a source of new nitrogen to ecosystems. Decomposing leaf litter is an energy‐rich substrate that favours the occurrence of this energy demanding process. Following the niche ‘complementarity hypothesis’, we expected that decomposing leaf litter of a single tree species would support lower rates of non‐symbiotic N fixation than mixed species litter taken from the forest floor. To test this hypothesis we measured acetylene reduction activity in the decomposing monospecific litter of three evergreen tree species (litter C/N ratios, 50–79) in an old‐growth rain forest of Chiloé Island, southern Chile. Results showed a significant effect of species and month (anova , Tukey's test, P < 0.05) on decomposition and acetylene reduction rates (ARR), and a species effect on C/N ratios and initial % N of decomposing leaf litter. The lowest litter quality was that of Nothofagus nitida (C/N ratio = 78.7, lignin % = 59.27 ± 4.09), which resulted in higher rates of acetylene reduction activity (mean = 34.09 ± SE = 10.34 nmol h?1 g?1) and a higher decomposition rate (k = 0.47) than Podocarpus nubigena (C/N = 54.4, lignin % = 40.31 ± 6.86, Mean ARR = 4.11 ± 0.71 nmol h?1 g?1, k = 0.29), and Drimys winteri (C/N = 50.6, lignin % = 45.49 ± 6.28, ARR = 10.2 ± 4.01 nmol h?1 g?1, k = 0.29), and mixed species litter (C/N = 60.7, ARR = 8.89 ± 2.13 nmol h?1g?1). We interpret these results as follows: in N‐poor litter and high lignin content of leaves (e.g. N. nitida) free‐living N fixers would be at competitive advantage over non‐fixers, thereby becoming more active. Lower ARR in mixed litter can be a consequence of a lower litter C/N ratio compared with single species litter. We also found a strong coupling between in situ acetylene reduction and net N mineralization in surface soils, suggesting that as soon N is fixed by diazotroph bacteria it may be immediately incorporated into mineral soil by N mineralizers, thus reducing N immobilization.  相似文献   

10.
Endophytes are ubiquitous plant‐associated microbes and although they have the potential to alter the decomposition of infected leaf litter, this has not been well‐studied. The endophyte Rhytisma punctatum infects the leaves of Acer macrophyllum (bigleaf maple), causing the appearance of black ‘tar spots’ that persist in senesced leaves. Other foliar fungi also cause visible damage in healthy tissues of this host plant system including an unidentified bullseye‐shaped lesion, common in western Washington. Using three treatments of endophyte infection status in leaf tissue (R. punctatum‐infected, bullseye‐infected, lesion‐free), leaf litter discs were submerged in a third‐order temperate stream using mesh litter bags and harvested periodically over two months to determine the effects of litter treatment and incubation time on litter mass loss, fungal sporulation, and microbial community colonization. Litter containing symptomatic endophyte infections (Rhytisma or bullseye) had reduced sporulation of aquatic hyphomycetes, but decomposed significantly faster than lesion‐free or bullseye‐infected litter. Using amplicon‐based sequencing, we found a significant difference in bacterial communities colonizing Rhytisma‐infected and bullseye‐infected leaf litter, a significant difference in fungal communities colonizing Rhytisma‐infected leaf litter compared to the two other treatments, and a change in both community structure and relative abundances of bacterial and fungal taxa throughout the study period. Indicator Species Analysis clarified the drivers of these community shifts at the genus level. Our results show that endophyte‐associated, in‐stream sporulation and microbial community effects are observable within one species of leaf litter.  相似文献   

11.
The Neotropical ant Pseudomyrmex triplarinus is involved in an obligate and complex symbiotic association with Triplaris americana trees. The ants inhabit trunk and branch domatia and respond aggressively to foreign invaders. Their degree of host specificity and basis for recognition of host trees has not been studied. We determined that, in contrast to T. americana seedlings, heterospecific seedlings set around the host trees suffered continuous pruning. Ants also removed 80–100 percent of heterospecific leaves attached to the trunk in contrast to only 10–30 percent of conspecific leaves. True species specificity was demonstrated by the selective removal of leaves from Triplaris poeppigiana pinned to host trees. This selectivity was also observed in a matrix‐independent bioassay using leaf cuticular extracts on glass microfiber strips. Strips treated with leaf wax extracts from host trees and pinned to the trunk of host trees received only 42 percent of the number of ant visits recorded on solvent‐treated controls by the end of the experiment. Strips treated with extracts of a related species, T. poeppigiana, received 64 percent of the number of ant visits compared with solvent‐treated controls. These experiments also suggest that P. triplarinus recognizes surface chemicals of their host tree, independent of the texture or architecture of the carrier material; although these factors may still play some role in recognition. This is the first study that we are aware of to investigate the mechanism of host discrimination related to pruning behavior. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

12.
Ailanthus altissima, a fast-growing and contamination-resistant species is investigated for its use in areas contaminated by heavy metals. A micropropagation protocol for A. altissima was developed, cultured shoots were tested for in vitro heavy metals tolerance. Proliferation rate and shoot length were affected by 6-benzylaminopurine (BAP) and Murashige and Skoog’s (MS) salt concentrations, best results were obtained in full strength MS medium supplemented with 1.32 or 2.64 μM BAP. Rooting percentage was strongly influenced by indole-3-butyric acid. Cultures of A. altissima exposed to heavy metals demonstrated a tolerance comparable to species already utilized in phytoremediation.  相似文献   

13.
Mistletoes offer a unique model to study interactions among Al and nutrients in vascular plants, because they grow and reproduce on hosts with distinct Al uptake strategies. We investigated Al distribution and nutrient relations of mistletoes on Al‐accumulating and non‐accumulating hosts. We hypothesised that mistletoes would exhibit similar leaf nutrient and Al concentrations as their host plants, but a strong compartmentalisation of Al when growing on Al‐accumulators. We measured concentrations of N, P, K, Ca, Mg, Cu, Fe, Mn, Zn in leaves and Al in leaves, seeds and branches of Phthirusa ovata and Psittacanthus robustus infecting Miconia albicans, an Al‐accumulator, and Ph. ovata infecting Byrsonima verbascifolia, a non‐Al‐accumulator. High leaf concentrations of Al in Ph. ovata only occurred while parasitizing the Al‐accumulating host; there was no accumulation in branches or seeds. In P. robustus, large concentrations of Al were found in leaves, branches and seeds. Mistletoe seed viability and leaf nutrient concentrations were not affected by Al accumulation. Passive uptake of Al, Ca, Mg, Mn and Cu in mistletoes was evidenced by significant correlations between mistletoes and host leaf concentrations, but not of N, P and K. Al was retranslocated to different plant organs in P. robustus, whereas it was mostly restricted to leaves in Ph. ovata. We suggest that Al might have some specific function in P. robustus, which only parasitizes Al‐accumulator hosts, while the host generalist Ph. ovata can be considered a facultative Al‐accumulator.  相似文献   

14.
ABSTRACT Across the Neotropics, small‐bodied terrestrial insectivores are sensitive to forest fragmentation and are largely absent from second‐growth forests. Despite their sensitivity to forest structure, the microhabitat relationships of these birds have not been quantified. From July 1994 to January 1995 in central Amazonia, we characterized habitat at sites where nine species of terrestrial insectivores were observed foraging, as well as at randomly selected sites in continuous forest and two types of 10–15‐yr‐old second‐growth forest common in Amazonia (Vismia‐ and Cecropia‐dominated). We used factor analysis to find suites of correlated variables. From each factor, we selected a representative variable that was relatively easy to measure. We used Bayesian analysis to estimate means and standard deviations of these variables for each species and for each type of habitat. All nine focal species were associated with ranges of microhabitat variables, such as leaf litter depth and tree densities, often absent in second‐growth forests. At least in the early stages of regeneration, neither type of second‐growth forest provides suitable structure for the terrestrial insectivores in our study. The large leaves of Cecropia trees that make up the thick leaf litter may preclude the use of Cecropia‐dominated second growth by our focal species, many of which manipulate leaves when foraging. The leaf litter in Vismia‐dominated second growth was also thicker than sites used for foraging by our focal species. In addition, Vismia‐dominated growth had more small trees and small nonwoody vegetation, perhaps impeding movement by terrestrial birds. In continuous forest, our focal species foraged in microhabitats with characteristics that generally overlapped those of randomly selected sites. Thus, our results are consistent with the hypothesis that microhabitat differences make second‐growth forests unsuitable for our focal species.  相似文献   

15.
Solar UV‐B radiation has been reported to enhance plant defenses against herbivore insects in many species. However, the mechanism and traits involved in the UV‐B mediated increment of plant resistance are unknown in crops species, such as soybean. Here, we studied defense‐related responses in undamaged and Anticarsia gemmatalis larvae‐damaged leaves of two soybean cultivars grown under attenuated or full solar UV‐B radiation. We determined changes in jasmonates, ethylene (ET), salicylic acid, trypsin protease inhibitor activity, flavonoids, and mRNA expression of genes related with defenses. ET emission induced by Anticarsia gemmatalis damage was synergistically increased in plants grown under solar UV‐B radiation and was positively correlated with malonyl genistin concentration, trypsin proteinase inhibitor activity and expression of IFS2, and the pathogenesis protein PR2, while was negatively correlated with leaf consumption. The precursor of ET, aminocyclopropane‐carboxylic acid, applied exogenously to soybean was sufficient to strongly induce leaf isoflavonoids. Our results showed that in field‐grown soybean isoflavonoids were regulated by both herbivory and solar UV‐B inducible ET, whereas flavonols were regulated by solar UV‐B radiation only and not by herbivory or ET. Our study suggests that, although ET can modulate UV‐B‐mediated priming of inducible plant defenses, some plant defenses, such as isoflavonoids, are regulated by ET alone.  相似文献   

16.
三种水库消落带草本植物对完全水淹的适应机制研究   总被引:1,自引:0,他引:1  
为了解虉草(Phalaris arundinacea)、牛鞭草(Hemarthria altissima)和狗牙根(Cynodon dactylon)3种水库消落带草本植物在完全水淹条件下的生理生态适应机制,对这3种植物的生态指标(枝条、叶和生物量)和生理指标(可溶性糖、淀粉和根系活力)的动态变化特征进行了研究。结果表明:在完全水淹条件下,虉草、牛鞭草和狗牙根都不产生新的枝条,它们通过减少总叶数、总叶长和生物量的方式来适应水淹环境。虉草和狗牙根通过减缓枝条生长速率来适应水淹环境,而牛鞭草则是通过先加快生长后抑制生长来保存活力。虉草、牛鞭草和狗牙根均以少量的碳水化合物(可溶性糖和淀粉)消耗,降低根系活力等方式来适应长期的水淹环境。3种草本植物的水淹耐受能力由大到小依次为狗牙根、虉草、牛鞭草。  相似文献   

17.
Plant defences vary in space and time, which may translate into specific herbivore‐foraging patterns and feeding niche differentiation. To date, little is known about the effect of secondary metabolite patterning on within‐plant herbivore foraging. We investigated how variation in the major maize secondary metabolites, 1,4‐benzoxazin‐3‐one derivatives (BXDs), affects the foraging behaviour of two leaf‐chewing herbivores. BXD levels varied substantially within plants. Older leaves had higher levels of constitutive BXDs while younger leaves were consistently more inducible. These differences were observed independently of plant age, even though the concentrations of most BXDs declined markedly in older plants. Larvae of the well‐adapted maize pest Spodoptera frugiperda preferred and grew better on young inducible leaves irrespective of plant age, while larvae of the generalist Spodoptera littoralis preferred and tended to grow better on old leaves. In BXD‐free mutants, the differences in herbivore weight gain between old and young leaves were absent for both species, and leaf preferences of S. frugiperda were attenuated. In contrast, S. littoralis foraging patterns were not affected. In summary, our study shows that plant secondary metabolites differentially affect performance and foraging of adapted and non‐adapted herbivores and thereby likely contribute to feeding niche differentiation.  相似文献   

18.
Scientific and technological progress has led to the creation of analysis tools that have revolutionized traditional studies in morphology and plant ecology. Recently developed methods and tools which, on the basis of leaf samples, allow for geometric morphometric analyses and the evaluation of functional strategies are good examples. These methods, still little used, have never been applied on leaf samples to simultaneously obtain information on their morphometry and the ecology of the plants. This article discusses the effectiveness of modern leaf analysis tools for geometric morphometrics (outline analysis) and studies of functional strategies based on the competitor‐stress tolerator‐ruderal (CSR) scheme, using a study of a steno‐endemic plant of the Alps, Primula albenensis Banfi et Ferl. as an example. These aspects were analyzed using leaf samples collected in the only two areas where this species grows. CSR analyses revealed that P. albenensis is not a stress‐tolerant species (C:S:R = 37:1:62), as previously thought. Moreover, no significant intraspecific differences in functional strategy were revealed. Instead, outline analysis highlighted a significant difference (p < 0.001) between leaves collected from the two sampling areas. The results of this study and others reported in the literature therefore suggest that these modern methods of leaf analysis are cheap, effective and relatively simple to perform. Furthermore, researchers are able to carry out geometric morphometric and CSR analysis using the same samples of leaves in order to maximize the information content provided by the analysis of a plant material which may not be easily available.  相似文献   

19.
The climbing orchid Erythrorchis altissima is the largest mycoheterotroph in the world. Although previous in vitro work suggests that E. altissima has a unique symbiosis with wood‐decaying fungi, little is known about how this giant orchid meets its carbon and nutrient demands exclusively via mycorrhizal fungi. In this study, the mycorrhizal fungi of E. altissima were molecularly identified using root samples from 26 individuals. Furthermore, in vitro symbiotic germination with five fungi and stable isotope compositions in five E. altissima at one site were examined. In total, 37 fungal operational taxonomic units (OTUs) belonging to nine orders in Basidiomycota were identified from the orchid roots. Most of the fungal OTUs were wood‐decaying fungi, but underground roots had ectomycorrhizal Russula. Two fungal isolates from mycorrhizal roots induced seed germination and subsequent seedling development in vitro. Measurement of carbon and nitrogen stable isotope abundances revealed that E. altissima is a full mycoheterotroph whose carbon originates mainly from wood‐decaying fungi. All of the results show that E. altissima is associated with a wide range of wood‐ and soil‐inhabiting fungi, the majority of which are wood‐decaying taxa. This generalist association enables E. altissima to access a large carbon pool in woody debris and has been key to the evolution of such a large mycoheterotroph.  相似文献   

20.
The present study evaluated the effectiveness of an aphid‐rearing method devised by Milner in 1981 using Acyrthosiphon pisum and its host plant Vicia faba. In the “agar‐leaf method,” excised leaves of V. faba were attached to the surface of 1% agar gel containing nutrient solution, and test aphids were transferred onto the leaves. Excised leaves grew in size and weight on the agar medium. Fecundity, longevity, body size and developmental time to adulthood were compared between aphids reared using the agar‐leaf method vs. those reared on V. faba seedlings under the same conditions. No significant difference was detected between the two treatments for any of the four parameters, suggesting that the aphids grew and reproduced on excised leaves as successfully as on V. faba seedlings. This method was also useful for inducing males and oviparous females at lower temperature and in short days. Therefore, the present study confirms the effectiveness of using excised leaves on agar and suggests that this method could be applied to the rearing of other aphids, phytophagous mites, leaf miners and leaf‐gall formers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号