首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Selective chemical modification of cytochrome P-450SCC has been carried out with lysine-modifying reagents. Modification of cytochrome P-450SCC with succinic anhydride was shown to result in loss of its ability to interact with intermediate electron transfer protein - adrenodoxin. To identify amino acid residues involved in charge-ion pairing with complementary carboxyl groups of adrenodoxin, cytochrome P-450SCC complex with adrenodoxin was modified with succinic anhydride. Adrenodoxin was then removed and cytochrome P-450 was additionally modified with isotopically labelled reagent. Subsequent chymotryptic hydrolysis of [14C]succinylated cytochrome P-450SCC and separation of digest obtained by combining various types of HPLC resulted in seven major radioactive peptides. The amino acid sequence of the peptides was determined by microsequencing. The major amino groups modified with radioactive succinic anhydride were found to be at Lys-73, -109, -110, -126, -145, -148 and -154 in the N-terminal sequence of cytochrome P-450SCC molecule and at Lys-267, -270, -338 and -342 in the C-terminal sequence. The role of electrostatic interactions in fixation of cytochrome P-450SCC complex with adrenodoxin is discussed.  相似文献   

2.
The alkylating agent 2-bromo-4'-nitroacetophenone (BrNAP) binds covalently to each of 10 isozymes of purified rat liver microsomal cytochrome P-450 (P-450a-P-450j) but substantially inhibits the catalytic activity of only cytochrome P-450c. Regardless of pH, incubation time, presence of detergents, or concentration of BrNAP, treatment of cytochrome P-450c with BrNAP resulted in no more than 90% inhibition of catalytic activity. Alkylation with BrNAP did not cause the release of heme from the holoenzyme or alter the spectral properties of cytochrome P-450c, data that exclude the putative heme-binding cysteine, Cys-460, as the major site of alkylation. Two residues in cytochrome P-450c reacted rapidly with BrNAP, for which reason maximal loss of catalytic activity was invariably associated with the incorporation of approximately 1.5 mol of BrNAP/mol of cytochrome P-450c. Two major radio-labeled peptides were isolated from a tryptic digest of [14C]BrNAP-treated cytochrome P-450c by reverse-phase high performance liquid chromatography. The amino acid sequence of each peptide was determined by microsequence analysis, but the identification of the residues alkylated by BrNAP was complicated by the tendency of the adducts to decompose when subjected to automated Edman degradation. However, results of competitive binding experiments with the sulfhydryl reagent 4,4'-dithiodipyridine identified Cys-292 as the major site of alkylation and Cys-160 as the minor site of alkylation by BrNAP in cytochrome P-450c.  相似文献   

3.
Rat testicular NADPH-cytochrome P-450 reductase was inactivated by treatment with 2,4,6-trinitrobenzene sulfonate (TNBS) or with 2',3'-dialdehyde derivatives of 5'-ATP and NADP+. The inactivation rates were dependent on reaction time and followed pseudo-first order kinetics. The rate of inactivation of cytochrome c reducing activity by TNBS was faster than that of reducing activities for K3Fe(CN)6 and for dichlorophenol indophenol (DCPIP). Cytochrome c and DCPIP prevented NADPH-cytochrome P-450 reductase from inactivation by TNBS, but NADP(H) protected to a lesser extent. Stoichiometry indicated that two residues of amino acid modified with TNBS were essential for the enzyme activity. The 2',3'-dialdehyde derivatives of 5'-ATP and NADP+ were specific ligands for the modification of lysine residues, whereas TNBS would possibly modify residues of lysine and/or cysteine. By differential and sequential modification by 5,5'-dithio-bis(2-nitrobenzoic acid), TNBS and dithiothreitol, the residues of lysine and cysteine were identified in the active site of NADPH-cytochrome P-450 reductase. These results suggest that lysyl and cysteinyl residues are located at or near the active region of NADPH-cytochrome P-450 reductase from the rat testicular microsomal fraction.  相似文献   

4.
In order to elucidate the complete amino acid sequence of Pseudomonas putida cytochrome P-450, tryptic digestion was performed on the S-carboxymethylated enzyme. Although cleavage did not occur at every lysyl and arginyl bond, 31 tryptic peptides ranging in size from 1 to 55 residues were isolated. These were sequenced by manual Edman degradation and carboxypeptidase digestion. Overlaps of some od these tryptic peptides were obtained by data obtained from partial Edman degradation and amino acid composition of the clostripain cleavage products. These results, together with data from the cyanogen bromide and acid cleavage peptides reported in the accompanying paper, established the complete amino acid sequence of P. putida cytochrome P-450.  相似文献   

5.
Phosphorylation of microsome-bound cytochrome P-450 LM2   总被引:1,自引:0,他引:1  
The phosphorylation of a microsomal protein of rabbit liver by catalytic subunit of cyclic AMP-dependent protein kinase was shown, and the protein was identified as cytochrome P-450 LM2 on basis of comparative peptide-mapping. Acid hydrolysis of microsome-bound phosphorylated cytochrome P-450 revealed that phosphorylation occurred exclusively on serine residues. This serine residue was identified as the same residue phosphorylated in purified, soluble P-450, that is, serine in position 128.  相似文献   

6.
Cytochrome P-450d was isolated from isosafrol-induced rat liver microsomes by affinity chromatography on 1.8-diaminooctyl-Sepharose 4B and chromatography on hydroxylapatite using a linear potassium phosphate gradient (45-250 mM). The enzyme has a molecular mass of 54 kDa, CO-maximum 448 nm is characterized by a high spin state; the rate of 4-aminobiphenyl hydroxylation is 54 nmol/min/nmol of cytochrome P-450d (37 degrees C), those, of 7-ethoxyresorufin O-deethylation and benz (a) pyrene oxidation are 1 nmol/min/nmol of cytochrome P-450d (22 degrees C) and 2 nmol/min/nmol of cytochrome P-450d (37 degrees C), respectively. The properties of cytochrome P-450d were compared to those of cytochrome P-450c isolated from 3-methylcholanthrene-induced rats. The yield of these cytochromes under the conditions used (10% P-450d from isosafrol-induced microsomes and 15% P-450c from 3-methylcholanthrene-induced microsomes) was relatively high. Antibodies to cytochromes P-450d and P-450c were obtained. Using rocket immunoelectrophoresis the percentage of these hemoprotein forms in 3-methylcholanthrene-induced (P-450d-20%, P-450c-70%) and isosafrol-induced rat liver microsomes (P-450d-50%, P-450c-15%) was determined.  相似文献   

7.
The major phenobarbital-inducible cytochrome P-450 purified from rat liver, a member of family II of the cytochrome P-450 gene superfamily, is rapidly phosphorylated by cAMP-dependent protein kinase. The phosphorylation reaches greater than 0.5 mol phosphate/mol P-450 after 5 min and is accompanied by a decrease in enzyme activity. The serine residue in position 128 was shown to be the sole phosphorylation site and a conformational change of the protein was indicated by a shift of the carbon monoxide difference spectrum of the reduced cytochrome from 450 to 420 nm. Comparison of amino acid sequences of various cytochrome P-450 families revealed a highly conserved arginine residue in the immediate vicinity of the phosphorylated serine residue which constitutes the kinase recognition sequence. It also revealed that only the members of the cytochrome P-450 family II carry this kinase recognition sequence. To find out whether this phosphorylation also occurs in vivo, the exchangeable phosphate pool of intact hepatocytes derived from phenobarbital-pretreated rats was labeled with 32Pi followed by an incubation of the cells with the membrane-permeating dibutyryl-cAMP or with the adenylate cyclase stimulator glucagon to activate endogenous kinase. As a result, a microsomal polypeptide with the same electrophoretic mobility as cytochrome P-450 became strongly labeled. Peptide mapping and immunoprecipitation with monospecific antibodies identified this protein as the major phenobarbital-inducible cytochrome P-450. It becomes phosphorylated at the same serine residues as in the cell-free phosphorylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
S Imaoka  Y Imai  T Shimada  Y Funae 《Biochemistry》1992,31(26):6063-6069
Cytochrome P-450 coded for by the 3A gene family requires specific conditions in a reconstituted system, if its catalytic activity is to be efficient. We investigated the mechanism of activation of the catalytic activity of cytochrome P450 3A by phospholipids. Rat P450 PB-1 (3A2), human P450NF (3A4), and rabbit P450 3c (3A6) were used. They had low activity in a reconstituted system (system I) with dilauroylphosphatidylcholine (DLPC) but had high activity with a mixture of phospholipids (DLPC, dioleoylphosphatidylcholine, and phosphatidylserine) and sodium cholate (system II). P450 3A forms are cationic (having a high content of lysine residues) and needed the anionic phospholipid phosphatidylserine to have sufficient activity. Double-reciprocal plots of the metabolic rate of cytochrome P-450 versus the concentration of NADPH-cytochrome P-450 reductase showed that cytochrome P-450 and the reductase interacted more in system II than in system I. P450 PB-1 did not absorb at 450 nm in the presence of reductase, CO, DLPC, and NADPH, although other cytochrome P-450s absorbed at around 450 nm in such a mixture. However, P450 PB-1 was reduced in the presence of the phospholipid mixture and sodium cholate instead of DLPC. These results suggested that the stimulation of catalytic activity by phospholipids involved increased interaction between cytochrome P-450 and the reductase. Studies of proteolytic digestion and chemical cross-linking in systems I and II showed that a P450 3A form needed disaggregation of cytochrome P-450 and/or the reductase, not the formation of an aggregated complex necessary for the catalytic activity of other cytochrome P-450s.  相似文献   

9.
Four isozymes of cytochrome P-450 were purified to varying degrees of homogeneity from liver microsomes of cod, a marine teleost fish. The cod were treated with beta-naphthoflavone by intraperitoneal injection, and liver microsomes were prepared by calcium aggregation. After solubilization of cytochromes P-450 with the zwitterionic detergent 3-[(3-cholamidopropyl) dimethylammonio]-1-propansulfonate, chromatography on Phenyl-Sepharose CL-4B, and subsequently on DEAE-Sepharose, resulted in two cytochrome P-450 fractions. These were further resolved on hydroxyapatite into a total of four fractions containing different isozymes of cytochromes P-450. One fraction, designated cod cytochrome P-450c, was electrophoretically homogeneous, was recovered in the highest yield and constituted the major form of the isozymes. The relative molecular mass of this form (58 000) corresponds well with a protein band appearing in cod liver microsomes after treatment with beta-naphthoflavone. Both cytochrome P-450c and a minor form called cytochrome P-450d (56000) showed activity towards 7-ethoxyresorufin in a reconstituted system containing rat liver NADPH-cytochrome P-450 reductase and phospholipid. Differences between these two forms were observed in the rate and optimal pH for conversion of this substrate, and in optical properties. Rabbit antiserum to cod cytochrome P-450c did not show any cross-reactions with cod cytochrome P-450a (Mr 55000) or cytochrome P-450d in Ouchterlony immunodiffusion, but gave a precipitin line of partial identity with cod cytochrome P-450b (Mr 54000), possibly as a result of contaminating cytochrome P-450c in this fraction.  相似文献   

10.
The purpose of this study was to purify and characterize the forms of cytochrome P-450 induced in chicken liver by acetone or ethanol. Using high performance liquid ion-exchange chromatography, we were able to isolate at least four different forms of cytochrome P-450 which were induced by acetone in chicken liver. All four forms of cytochrome P-450 proved to be distinct proteins, as indicated by their N-terminal amino acid sequences and their reconstituted catalytic activities. Two of these forms, also induced by glutethimide in chicken embryo liver, appeared to be cytochromes P450IIH1 and P450IIH2. Both of these cytochromes P-450 have identical catalytic activities towards benzphetamine demethylation. However, they differ in their abilities to hydroxylate p-nitrophenol and to convert acetaminophen into a metabolite that forms a covalent adduct with glutathione at the 3-position. Another form of cytochrome P-450 induced by acetone is highly active in the hydroxylation of p-nitrophenol and in the conversion of acetaminophen to a reactive metabolite, similar to reactions catalysed by mammalian cytochrome P450IIE. Yet the N-terminal amino acid sequence of this form has only 30-33% similarity with cytochrome P450IIE purified from rat, rabbit and human livers. A fourth form of cytochrome P-450 was identified whose N-terminal amino acid sequence and enzymic activities do not correspond to any mammalian cytochromes P-450 reported to be induced by acetone or ethanol.  相似文献   

11.
The capacities of forms of cytochrome P-450 to oxidize antipyrine were compared. An isotope dilution gas chromatography/mass spectrometry/selected ion monitoring assay was developed to quantify the three main metabolites, norantipyrine, 3-hydroxymethylantipyrine and 4-hydroxyantipyrine. 13C,15N-Double labeled antipyrine was used as a substrate and the metabolites were analyzed as their trimethylsilyl derivatives. Among forms of cytochrome P-450 examined, a male-specific form of P-450, namely P-450-male, showed higher activity to form all the three metabolites. The other forms were responsible only for the formation of norantipyrine and 4-hydroxyantipyrine. The activities of liver microsomes from untreated male and female rats and rats treated with phenobarbital, 3-methylcholanthrene or polychlorinated biphenyl were expressed dependent on the activities of forms of cytochrome P-450 examined.  相似文献   

12.
The amounts of 5 different forms of cytochrome P-450 in liver microsomes from rats treated with 2-acetylaminofluorene were determined and compared with the corresponding patterns in microsomes from control, 3-methylcholanthrene- and phenobarbital-treated animals. 2-Acetylaminofluorene was found to increase the amount of cytochromes P-450b + e 10-fold and of cytochrome P-450d 3-fold, while there was a 54% increase in the level of cytochrome P-450 PB/PCN-E. Cytochrome P-450c was increased from a level too low to detect (less than 0.001 pmol/mg protein) to 0.019 pmol/mg protein. These findings were also confirmed by partial purification of cytochromes P-450b + e and c after 2-acetylaminofluorene treatment.  相似文献   

13.
Treatment of rats with 3-methylcholanthrene leads not only to a marked accumulation in the liver of translatable mRNA coding for a 56-kilodalton polypeptide representing cytochrome P-450c, the major 3-methylcholanthrene-induced cytochrome P-450 of rat liver, but also to the accumulation of comparable amounts of mRNA encoding a 52-kilodalton polypeptide which is immunoprecipitated with antibodies prepared against rat liver cytochrome P-450c. Further electrophoretic and immunochemical characterization of the latter translation product demonstrates that it corresponds to cytochrome P-450d, the major isosafrole-induced form of rat liver cytochrome P-450. The mRNAs for cytochromes P-450c and P-450d can be completely separated by electrophoresis in denaturing agarose gels and have chain lengths of approximately 4000 and 2000 nucleotides, respectively. These two mRNAs do not show detectable sequence homology to the mRNAs coding for the major phenobarbital-induced forms of cytochrome P-450 (P-450b and P-450e) since in Northern blotting experiments they fail to hybridize under conditions of low to moderate stringency to cloned probes for the latter mRNAs.  相似文献   

14.
Four microsomal cytochrome P-450s (P-450), all of which are active testosterone 6 beta-hydroxylases, were purified to electrophoretic homogeneity from livers of phenobarbital-treated (P-4506 beta-1 and P-4506 beta-3) or dexamethasone-treated adult male rats (P-4506 beta-2 and P-4506 beta-4). Purified P-4506 beta-1, P-4506 beta-2, P-4506 beta-3, and P-4506 beta-4 had apparent molecular weights of 52,000, 51,000, 52,000, and 52,500 as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Absolute spectra revealed that all four P-450 forms had characteristic low-spin spectral patterns in their fully oxidized states. P-4506 beta-1 and P-4506 beta-3 displayed spectra of the reduced carbonyl complex with lambda max at 447 nm. P-4506 beta-2 and P-4506 beta-4 showed lambda max at 446 and 448 nm, respectively. Antibodies raised against each P-450 recognized all forms, although differences were observed with respect to the extents of cross-reactivities on Western blots. Form-specific peptide fragments were also detected among the four P-450 proteins after partial protease-digestion. P-4506 beta-1 was identical to P-4506 beta-3 in the first 26 residues of the NH2-terminal amino acid sequence, but differed by 13 residues from P-4506 beta-2. The amino-terminal sequence of P-4506 beta-2 was unique and was not identical with those of any rat P-450 previously reported. This P-450 form was detected in the livers of untreated male rats and was induced by treatment with dexamethasone, but not with phenobarbital.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The amounts of five different forms of cytochrome P-450 and of microsomal epoxide hydrolase were determined immunochemically in rat liver microsomes before and after treatment of the animals with 2-acetylaminofluorene and 15 structurally related compounds. The amount of cytochrome P-450c was found to be increased about 60-fold after treatment with 2-aminofluorene and 3-aminofluorene. Administration of 1-aminofluorene, 4-aminofluorene, 2-acetylaminofluorene and nitrofluorene increased this isozyme about 15-19 times. 2-Aminofluorene was found to inhibit the binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin to a cytoplasmic receptor 50% at a concentration of 3.12 microM, while no such inhibition could be detected with 2-acetylaminofluorene. Induction of ethoxyresorufin O-deethylase activity was found to be highly correlated (+0.95) with the induction of cytochrome P-450c. Also correlated with the induction of this form was the amount of cytochrome P-450d (+0.84), which could be maximally increased about fourfold. Cytochromes P-450b + e were induced by 2-acetylaminofluorene, 4-acetylaminofluorene and fluorene (about tenfold), while 4-aminofluorene and 4-acetylaminofluorene were found to elevate cytochrome P-450PB/PCN-E about threefold. Microsomal epoxide hydrolase was induced by many of the compounds tested, with 2,7-diaminofluorene, 2,7-diacetylaminofluorene, 2-acetylaminofluorene and 2-(N-hydroxy)acetylaminofluorene being the most potent. No correlation of the induction of this enzyme with the induction of any isozyme of cytochrome P-450 was observed.  相似文献   

16.
A novel human liver cytochrome P-450 isozyme (P-450-AA), which catalyzes arachidonic acid epoxidation, has been purified to electrophoretic homogeneity from human liver. As judged spectrally, the newly described isozyme is low spin in the oxidized state, with a soret band at 415 nm and an increased maximum at 451 nm in the CO-difference spectrum. Cytochrome P-450-AA appeared homogeneous as judged by the appearance of a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an estimated molecular weight of 53,100. Although cytochrome P-450-AA had a relatively low specific content of 10.8 nmol/mg, it possessed a high activity of arachidonic acid epoxidation. The P-450-AA oxidized arachidonic acid in a reconstituted system into the four regioisomeric epoxyeicosatrienoic acids (EETs) (5, 6-, 8, 9-, 11, 12-, 14, 15-EETs) at a rate of 2,010 pmol/nmol/min, a rate which is 37-fold higher than that observed with the crude microsomal preparation. Moreover, the purified cytochrome P-450-AA catalyzed the de-ethylation of 7-ethoxyresorufin at the rate of 2970 pmol/nmol/min, whereas other cytochrome P-450-dependent reactions were carried out at 23-2,000-fold lower rates and ranged between 0.3-130 pmol/nmol/min. The amino acid composition is different from that of other cytochrome P-450 isozymes. The NH2-terminal sequence of 20-amino acid residues was compared to that of LM2 and PB2-B2, the phenobarbital-induced forms in rabbit and rats, respectively. Comparison was also made with two forms of human cytochrome P-450, HLc and HLd. There were 7/20 identical residues for P-450-AA and LM2 and 4/20 for P-450-AA and PB2-B2. There were 2/20 identical residues for P-450-AA and HLd, and no identical residues were found for HLc. We conclude that the biologically active EETs, are formed by a distinct and unique P-450 isozyme from human liver and that arachidonic acid can serve as a screen for detection of the novel P-450 isozyme.  相似文献   

17.
Adrenocortical NADPH-cytochrome P-450 reductase (EC. 1.6.2.4) was purified from bovine adrenocortical microsomes by detergent solubilization and affinity chromatography. The purified cytochrome P-450 reductase was a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, being electrophoretically homogeneous and pure. The cytochrome P-450 reductase was optically a typical flavoprotein. The absorption peaks were at 274, 380 and 45 nm with shoulders at 290, 360 and 480 nm. The NADPH-cytochrome P-450 reductase was capable of reconstituting the 21-hydroxylase activity of 17 alpha-hydroxyprogesterone in the presence of cytochrome P-45021 of adrenocortical microsomes. The specific activity of the 21-hydroxylase of 17 alpha-hydroxyprogesterone in the reconstituted system using the excess concentration of the cytochrome P-450 reductase, was 15.8 nmol/min per nmol of cytochrome P-45021 at 37 degrees C. The NADPH-cytochrome P-450 reductase, like hepatic microsomal NADPH-cytochrome P-450 reductase, could directly reduce the cytochrome P-45021. The physicochemical properties of the NADPH-cytochrome P-450 reductase were investigated. Its molecular weight was estimated to be 80 000 +/- 1000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analytical ultracentrifugation. The cytochrome P-450 reductase contained 1 mol each FAD and FMN as coenzymes. Iron, manganese, molybdenum and copper were not detected. The Km values of NADPH and NADH for the NADPH-cytochrome c reductase activity and those of cytochrome c for the activity of NADPH-cytochrome P-450 reductase were determined kinetically. They were 5.3 microM for NADPH, 1.1 mM for NADH, and 9-24 microM for cytochrome c. Chemical modification of the amino acid residues showed that a histidyl and cysteinyl residue are essential for the binding site of NADPH of NADPH-cytochrome P-450 reductase.  相似文献   

18.
Limited tryptic proteolysis of spinach (Spinacia oleracea) ribulose bisphosphate carboxylase/oxygenase (ribulose-P2 carboxylase) resulted in the ordered release of two adjacent N-terminal peptides from the large subunit, and an irreversible, partial inactivation of catalysis. The two peptides were identified as the N-terminal tryptic peptide (acetylated Pro-3 to Lys-8) and the penultimate tryptic peptide (Ala-9 to Lys-14). Kinetic comparison of hydrolysis at Lys-8 and Lys-14, enzyme inactivation, and changes in the molecular weight of the large subunit, indicated that proteolysis at Lys-14 correlated with inactivation, while proteolysis at Lys-8 occurred much more rapidly. Thus, enzyme inactivation is primarily the result of proteolysis at Lys-14. Proteolysis of ribulose-P2 carboxylase under catalytic conditions (in the presence of CO2, Mg2+, and ribulose-P2) also resulted in ordered release of these tryptic peptides; however, the rate of proteolysis at lysyl residues 8 and 14 was reduced to approximately one-third of the rate of proteolysis of these lysyl residues under noncatalytic conditions (in the presence of CO2 and Mg2+ only). The protection of these lysyl residues from proteolysis under catalytic conditions could reflect conformational changes in the N-terminal domain of the large subunit which occur during the catalytic cycle.  相似文献   

19.
Chemical modification of cytochrome P-450scc by lysine-specific reagents has been performed. Modification of the hemoprotein was shown to result in the loss of its ability to interact with adrenodoxin. With a view of identifying lysine residues involved in the interaction with adrenodoxin, cytochrome P-450scc was modified by succinic anhydride in the presence of adrenodoxin. After the removal of ferredoxin, the modification was performed with the use of a radioactively labeled reagent. Subsequent hydrolysis of the succinic hemoprotein by chymotrypsin and separation of the peptides obtained by high pressure liquid chromatography resulted in the isolation of seven chymotryptic peptides containing labeled lysine residues. These amino acid sequences were identified. The role of lysine residues of cytochrome P-450scc in complex formation with adrenodoxin is discussed.  相似文献   

20.
Two forms of cytochrome P-450 (P-450), designated P-450MP-1 and P-450MP-2, were purified to electrophoretic homogeneity from human liver microsomes on the basis of mephenytoin 4-hydroxylase activity. Purified P-450MP-1 and P-450MP-2 contained 12-17 nmol of P-450/mg of protein and had apparent monomeric molecular weights of 48,000 and 50,000, respectively. P-450MP-1 and P-450MP-2 were found to be very similar proteins as judged by chromatographic behavior on n-octylamino-Sepharose 4B, hydroxylapatite, and DEAE- and CM-cellulose columns, spectral properties, amino acid composition, peptide mapping, double immunodiffusion analysis, immunoinhibition, and N-terminal amino acid sequences. In vitro translation of liver RNA yielded polypeptides migrating with P-450MP-1 or P-450MP-2, depending upon which form was in each sample, indicating that the two P-450s are translated from different mRNAs. When reconsituted with NADPH-cytochrome-P-450 reductase and L-alpha-dilauroyl-sn-glyceryo-3-phosphocholine, P-450MP-1 and P-450MP-2 gave apparently higher turnover numbers for mephenytoin 4-hydroxylation than did the P-450 in the microsomes. The addition of purified rat or human cytochrome b5 to the reconstituted system caused a significant increase in the hydroxylation activity; the maximum stimulation was obtained when the molar ratio of cytochrome b5 to P-450 was 3-fold. Rabbit anti-human cytochrome b5 inhibited NADH-cytochrome-c reductase and S-mephenytoin 4-hydroxylase activities in human liver microsomes. In the presence of cytochrome b5, the Km value for S-mephenytoin was 1.25 mM with all five purified cytochrome P-450s preparations, and Vmax values were 0.8-1.25 nmol of 4-hydroxy product formed per min/nmol of P-450. P-450MP is a relatively selective P-450 form that metabolizes substituted hydantoins well. Reactions catalyzed by purified P-450MP-1 and P-450MP-2 preparations and inhibited by anti-P-450MP in human liver microsomes include S-mephenytoin 4-hydroxylation, S-nirvanol 4-hydroxylation, S-mephenytoin N-demethylation, and diphenylhydantoin 4-hydroxylation. Thus, at least two very similar forms of human P-450 are involved in S-mephenytoin 4-hydroxylation, an activity which shows genetic polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号