首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a statistical-mechanical selection theory for the sequence analysis of a set of specific DNA regulatory sites that makes it possible to predict the relationship between individual base-pair choices in the site and specific activity (affinity). The theory is based on the assumption that specific DNA sequences have been selected to conform to some requirement for protein binding (or activity), and that all sequences that can fulfil this requirement are equally likely to occur. In most cases, the number of specific DNA sequences that are known for a certain DNA-binding protein is very small, and we discuss in detail the small-sample uncertainties that this leads to. When applied to the binding sites for cro repressor in phage lambda, the theory can predict, from the sequence statistics alone, their rank order binding affinities in reasonable agreement with measured values. However, the statistical uncertainty generated by such a small sample (only 6 sites known) limits the result to order-of-magnitude comparisons. When applied to the much larger sample of Escherichia coli promoter sequences, the theory predicts the correlation between in vitro activity (k2KB values) and homology score (closeness to the consensus sequence) observed by Mulligan et al. (1984). The analysis of base-pair frequencies in the promoter sample is consistent with the assumption that base-pairs at different positions in the sites contribute independently to the specific activity, except in a few marginal cases that are discussed. When the promoter sites are ordered according to predicted activities, they seem to conform to the Gaussian distribution that results from a requirement for maximal sequence variability within the constraint of providing a certain average activity. The theory allows us to compare the number of specific sites with a certain activity to the number that would be expected from random occurrence in the genome. While strong promoters are "overspecified", in the sense that their probability of random occurrence is very low, random sequences with weak promoter-like properties are expected to occur in very large numbers. This leads to the conclusion that functional specificity is based on other properties in addition to primary sequence recognition; some possibilities are discussed. Finally, we show that the sequence information, as defined by Schneider et al. (1986), can be used directly (at least in the case of equilibrium binding sites) to estimate the number of protein molecules that are specifically bound at random "pseudosites" in the genome.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The frequency of base-pair occurrence in a set of recognition sequences for a particular DNA-binding protein is strongly related to the contributions to the binding free energy from the individual base pairs. Thus from the statistics of base-pair choice, it is possible to estimate the relative binding strengths of any base-pair sequences and to predict the effect of point mutations in specific sites. On the same basis, one can describe the binding properties of random DNA sequences and thereby the expected competitive effects from all the nonspecific DNA sites in the genome of a living cell. The statistical selection theory [Berg & von Hippel.J. Mol. Biol. 193 (1987) 723-750] describing these relations is extended and tested with computer simulations. The theory is shown to hold up well also in the case when base pairs contribute cooperatively to the binding interaction. The simulations also demonstrate the effects of the statistical small-sample uncertainty that appears due to the limited size of all sets of recognition sites identified.  相似文献   

3.
C G Burd  G Dreyfuss 《The EMBO journal》1994,13(5):1197-1204
Pre-mRNA is processed as a large complex of pre-mRNA, snRNPs and pre-mRNA binding proteins (hnRNP proteins). The significance of hnRNP proteins in mRNA biogenesis is likely to be reflected in their RNA binding properties. We have determined the RNA binding specificity of hnRNP A1 and of each of its two RNA binding domains (RBDs), by selection/amplification from pools of random sequence RNA. Unique RNA molecules were selected by hnRNP A1 and each individual RBD, suggesting that the RNA binding specificity of hnRNP A1 is the result of both RBDs acting as a single RNA binding composite. Interestingly, the consensus high-affinity hnRNP A1 binding site, UAGGGA/U, resembles the consensus sequences of vertebrate 5' and 3' splice sites. The highest affinity 'winner' sequence for hnRNP A1 contained a duplication of this sequence separated by two nucleotides, and was bound by hnRNP A1 with an apparent dissociation constant of 1 x 10(-9) M. hnRNP A1 also bound other RNA sequences, including pre-mRNA splice sites and an intron-derived sequence, but with reduced affinities, demonstrating that hnRNP A1 binds different RNA sequences with a > 100-fold range of affinities. These experiments demonstrate that hnRNP A1 is a sequence-specific RNA binding protein. UV light-induced protein-RNA crosslinking in nuclear extracts demonstrated that an oligoribonucleotide containing the A1 winner sequence can be used as a specific affinity reagent for hnRNP A1 and an unidentified 50 kDa protein. We also show that this oligoribonucleotide, as well as two others containing 5' and 3' pre-mRNA splice sites, are potent inhibitors of in vitro pre-mRNA splicing.  相似文献   

4.
The Escherichia coli protein Fis is remarkable for its ability to interact specifically with DNA sites of highly variable sequences. The mechanism of this sequence-flexible DNA recognition is not well understood. In a previous study, we examined the contributions of Fis residues to high-affinity binding at different DNA sequences using alanine-scanning mutagenesis and identified several key residues for Fis-DNA recognition. In this work, we investigated the contributions of the 15-bp core Fis binding sequence and its flanking regions to Fis-DNA interactions. Systematic base-pair replacements made in both half sites of a palindromic Fis binding sequence were examined for their effects on the relative Fis binding affinity. Missing contact assays were also used to examine the effects of base removal within the core binding site and its flanking regions on the Fis-DNA binding affinity. The results revealed that: (1) the − 7G and + 3Y bases in both DNA strands (relative to the central position of the core binding site) are major determinants for high-affinity binding; (2) the C5 methyl group of thymine, when present at the + 4 position, strongly hinders Fis binding; and (3) AT-rich sequences in the central and flanking DNA regions facilitate Fis-DNA interactions by altering the DNA structure and by increasing the local DNA flexibility. We infer that the degeneracy of specific Fis binding sites results from the numerous base-pair combinations that are possible at noncritical DNA positions (from − 6 to − 4, from − 2 to + 2, and from + 4 to + 6), with only moderate penalties on the binding affinity, the roughly similar contributions of − 3A or G and + 3T or C to the binding affinity, and the minimal requirement of three of the four critical base pairs to achieve considerably high binding affinities.  相似文献   

5.
The EcoRI restriction endonuclease was found by the filter binding technique to form stable complexes, in the absence of Mg2+, with the DNA from derivatives of bacteriophage lambda that either contain or lack EcoRI recognition sites. The amount of complex formed at different enzyme concentrations followed a hyperbolic equilibrium-binding curve with DNA molecules containing EcoRI recognition sites, but a sigmoidal equilibrium-binding curve was obtained with a DNA molecule lacking EcoRI recognition sites. The EcoRI enzyme displayed the same affinity for individual recognition sites on lambda DNA, even under conditions where it cleaves these sites at different rates. The binding of the enzyme to a DNA molecule lacking EcoRI sites was decreased by Mg2+. These observations indicate that (a) the EcoRI restriction enzyme binds preferentially to its recognition site on DNA, and that different reaction rates at different recognition sites are due to the rate of breakdown of this complex; (b) the enzyme also binds to other DNA sequences, but that two molecules of enzyme, in a different protein conformation, are involved in the formation of the complex at non-specific consequences; (c) the different affinities of the enzyme for the recognition site and for other sequences on DNA, coupled with the different protein conformations, account for the specificity of this enzyme for the cleavage of DNA at this recognition site; (d) the decrease in the affinity of the enzyme for DNA, caused by Mg2+, liberates binding energy from the DNA-protein complex that can be used in the catalytic reaction.  相似文献   

6.
7.
We developed a fluorescence-based assay method for determining ligand binding activities of C-reactive protein (CRP) in solution. Using this method, we compared the phosphorylcholine (PC)- and polycation-based binding activities of human CRP. The PC-based binding required calcium, whereas a polycation (e.g. poly-l-lysine) was bound in the presence of either calcium or EDTA, the binding being stronger in the presence of EDTA. The published crystallographic structures of CRP and the CRP.PC complex show it to be a ring-shaped pentamer with a single PC-binding site per subunit facing the same direction. As expected from such a structure, binding affinity of a ligand increased tremendously when multiple PC residues were present on a macromolecular structure. In addition to PC-related structures, certain sugar phosphates (e.g. galactose 6-phosphate) are bound near the PC-binding site, and one of the sugar hydroxyl groups appears to interact with CRP. The best small ligands for the polycationic binding site were Lys-Lys and Lys4. Because of the presence of multiple Lys-Lys sequences, polylysines have tremendously enhanced affinity. Although PC inhibits both PC- and polycation-based binding, none of the amines that inhibit polylysine binding inhibits PC binding, suggesting that the PC and polycationic binding sites do not overlap.  相似文献   

8.
The ADR1 protein recognizes a six base-pair consensus DNA sequence using two zinc fingers and an adjacent accessory motif. Kinetic measurements were performed on the DNA-binding domain of ADR1 using surface plasmon resonance. Binding by ADR1 was characterized to two known native binding sequences from the ADH2 and CTA1 promoter regions, which differ in two of the six consensus positions. In addition, non-specific binding by ADR1 to a random DNA sequence was measured. ADR1 binds the native sites with nanomolar affinities. Remarkably, ADR1 binds non-specific DNA with affinities only approximately tenfold lower than the native sequences. The specific and non-specific binding affinities are conferred mainly by differences in the association phase of DNA binding. The association rate for the complex is strongly influenced by the proximal accessory region, while the dissociation reaction and specificity of binding are controlled by the two zinc fingers. Binding kinetics of two ADR1 mutants was also examined. ADR1 containing an R91K mutation in the accessory region bound with similar affinity to wild-type, but with slightly less sequence specificity. The R91K mutation was observed to increase binding affinity to a suboptimal sequence by decreasing the complex dissociation rate. L146H, a change-of-specificity mutation at the +3 position of the second zinc finger, bound its preferred sequence with a slightly higher affinity than wild-type. The L146H mutant indicates that beneficial protein-DNA contacts provide similar levels of stabilization to the complex, whether they are hydrogen-bonding or van der Waals interactions.  相似文献   

9.
10.
11.
12.
13.
Various workers in their studies of the binding of haptens to IgM have observed that at low hapten concentration IgM has an apparent valence of five or near five, while at high hapten concentration IgM has a valence of ten. A possible explanation for this is that there is an interaction between binding sites on the same F(ab')2 region of the IgM molecule. In this paper the theory for such an interaction is presented and an expression for the apparent valence is derived. It is shown that the apparent valence depends on both the interaction between binding sites on the IgM molecule and on the width of the affinity distribution which characterizes the antiserum. A broad affinity distribution can give an apparent valence of five even when there is no interaction between sites, i.e., even when the ten binding sites on the IgM molecule are identical and independent. The general properties of a Scatchard plot are also discussed. When there is no interaction between sites it is shown that the average affinity and the variance of the affinity distribution can be obtained from a Scatchard plot. To illustrate the theory, an antiserum with affinities characterized by a normal distribution is considered and a simple method is presented for determining alpha, the parameter which measures the width of the normal distribution.  相似文献   

14.
The binding of the cyclic AMP receptor protein (CRP) to symmetrical synthetic DNA-binding sites was investigated with a gel-retardation assay. A set of ten different sequences was employed, comprising all base permutations at positions 2, 4, and 5 of the consensus sequence 5'(TGTGA)3'. We show that: (i) CRP has a higher affinity for the completely symmetrical site than towards the lac wild-type site; (ii) base substitutions at position 2 lead to either a complete loss of specific CRP binding (G----C), a reduction in specific CRP binding (G----A) or only marginal effects on specific CRP binding (G----T); (iii) changes at position 4 abolish (G----C; G----A) or reduce (G----T) specific CRP binding; and (iv) base permutations at position 5 reduce specific CRP binding, but never completely abolish it. Thus position 4, and to a lesser extent position 2, in the DNA consensus sequence are the most crucial ones for specific binding by CRP.  相似文献   

15.
The cAMP receptor protein SYCRP1 in cyanobacterium Synechocystis sp. PCC 6803 is a regulatory protein that binds to the consensus DNA sequence (5'-AAATGTGATCTAGATCACATTT-3') for the cAMP receptor protein CRP in Escherichia coli. Here we examined the effects of systematic single base-pair substitutions at positions 4-8 (TGTGA) of the consensus sequence on the specific binding of SYCRP1. The consensus sequence exhibited the highest affinity, and the effects of base-pair substitutions at positions 5 and 7 were the most deleterious. The result is similar to that previously reported for CRP, whereas there were differences between SYCRP1 and CRP in the rank order of affinity for each substitution.  相似文献   

16.
A system has been developed for facile generation and characterization of mutant lac operator sites, free of competing pseudo operator sequences. The interaction of lac repressor with these sites has been investigated by the nitrocellulose filter binding assay. The equilibrium binding affinity for each of three single-site changes was reduced by more than three orders of magnitude relative to the wild-type operator under standard assay conditions. The free-energy changes associated with single base-pair substitutions are not additive. We propose that adaptations in the recognition surface of the repressor involving significant trade-offs between electrostatic versus non-electrostatic interactions and between enthalpic versus entropic contributions to the binding free energy occur, in order to achieve the most stable complex with a given DNA sequence.  相似文献   

17.
Staphylococcal toxins bind to different sites on HLA-DR   总被引:5,自引:0,他引:5  
Staphylococcal enterotoxins (SE) and toxic shock syndrome toxin 1 (TSST-1) bind to MHC class II molecules and the toxin-class II complexes induce proliferation of T cells bearing specific V beta sequences. We have previously reported that these toxins display varying binding affinities for HLA-DR1. We now investigated whether these differences simply reflected differences in binding affinity for a single class II binding site or, at least in part, the engagement of different binding sites on the HLA-DR complex. Through competitive binding studies we show that SEB and TSST-1, which are not closely related by their amino acid sequences, bind to two different sites on HLA-DR. Both of these sites are also occupied by staphylococcal enterotoxin A (SEA), enterotoxin D (SED), and enterotoxin E (SEE) which exhibit more than 70% amino acid sequence homology. SEB and TSST-1 failed to inhibit SEA binding to HLA-DR. These studies suggest that there may be three distinct, although perhaps overlapping, binding sites on HLA-DR for these toxins. Further, although SED and SEE are similar to SEA in structure, and appear to bind the same sites on HLA-DR as SEA, they displayed significantly lower binding affinities. T cell proliferative responses to SED required a higher concentration of the toxin than SEA, probably reflecting its lower binding affinity. SEE, however, elicited T cell responses at very low concentrations, similar to SEA, despite its much lower binding affinity. Therefore, although the affinities of these toxins to MHC class II molecules appear to significantly influence the T cell responses, the effective recognition of the toxin-class II complex by the TCR may also contribute to such responses.  相似文献   

18.
19.
Molecular docking is a popular way to screen for novel drug compounds. The method involves aligning small molecules to a protein structure and estimating their binding affinity. To do this rapidly for tens of thousands of molecules requires an effective representation of the binding region of the target protein. This paper presents an algorithm for representing a protein's binding site in a way that is specifically suited to molecular docking applications. Initially the protein's surface is coated with a collection of molecular fragments that could potentially interact with the protein. Each fragment, or probe, serves as a potential alignment point for atoms in a ligand, and is scored to represent that probe's affinity for the protein. Probes are then clustered by accumulating their affinities, where high affinity clusters are identified as being the "stickiest" portions of the protein surface. The stickiest cluster is used as a computational binding "pocket" for docking. This method of site identification was tested on a number of ligand-protein complexes; in each case the pocket constructed by the algorithm coincided with the known ligand binding site. Successful docking experiments demonstrated the effectiveness of the probe representation.  相似文献   

20.
Binding isotherms were constructed for the binding of synthetic tetrapeptide and pentapeptide fragments to membranes prepared from chicken cerebellar tissue. Both the tetrapeptide (FMRFamide), which was originally isolated from ganglia of mollusks, and the pentapeptide (LPLRFamide) previously isolated from chicken brain are known to increase blood pressure and modulate brain neurons in rats. The C-terminal dipeptide sequences of the two peptides are identical and both show similarity to the dipeptide sequence established for the pancreatic polypeptide (PP) family. Specific high-affinity binding sites exist for the latter peptide, sites which are competed for (though with less affinity) by neuropeptide Y (NPY). Affinity for cerebellar membranes was virtually equivalent for the synthetic peptide LPLRFamide and FRMFamide; the binding affinities (IC50) of all fragments tested (C-terminal pentapeptides of avian PP and NPY, and FMRFamide and LPLRFamide) fell in the same approximate range. Since the N-terminal residues of FMRFamide and LPLRFamide are not homologous with equivalent residues of APP or NPY, our results indicate that only Arg-Tyr-NH2 or Arg-Phe-NH2 sequences are necessary for binding of the carboxy terminus peptides of the PP family. In this respect, these sequences are functionally equivalent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号