首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schmegner C  Hoegel J  Vogel W  Assum G 《Genetics》2007,175(1):421-428
The human genome is composed of long stretches of DNA with distinct GC contents, called isochores or GC-content domains. A boundary between two GC-content domains in the human NF1 gene region is also a boundary between domains of early- and late-replicating sequences and of regions with high and low recombination frequencies. The perfect conservation of the GC-content distribution in this region between human and mouse demonstrates that GC-content stabilizing forces must act regionally on a fine scale at this locus. To further elucidate the nature of these forces, we report here on the spectrum of human SNPs and base pair substitutions between human and chimpanzee. The results show that the mutation rate changes exactly at the GC-content transition zone from low values in the GC-poor sequences to high values in GC-rich ones. The GC content of the GC-poor sequences can be explained by a bias in favor of GC > AT mutations, whereas the GC content of the GC-rich segment may result from a fixation bias in favor of AT > GC substitutions. This fixation bias may be explained by direct selection by the GC content or by biased gene conversion.  相似文献   

2.
Population genetic analyses often use polymorphism data from one species, and orthologous genomic sequences from closely related outgroup species. These outgroup sequences are frequently used to identify ancestral alleles at segregating sites and to compare the patterns of polymorphism and divergence. Inherent in such studies is the assumption of parsimony, which posits that the ancestral state of each single nucleotide polymorphism (SNP) is the allele that matches the orthologous site in the outgroup sequence, and that all nucleotide substitutions between species have been observed. This study tests the effect of violating the parsimony assumption when mutation rates vary across sites and over time. Using a context-dependent mutation model that accounts for elevated mutation rates at CpG dinucleotides, increased propensity for transitional versus transversional mutations, as well as other directional and contextual mutation biases estimated along the human lineage, we show (using both simulations and a theoretical model) that enough unobserved substitutions could have occurred since the divergence of human and chimpanzee to cause many statistical tests to spuriously reject neutrality. Moreover, using both the chimpanzee and rhesus macaque genomes to parsimoniously identify ancestral states causes a large fraction of the data to be removed while not completely alleviating problem. By constructing a novel model of the context-dependent mutation process, we can correct polymorphism data for the effect of ancestral misidentification using a single outgroup.  相似文献   

3.
Compositional evolution of noncoding DNA in the human and chimpanzee genomes   总被引:11,自引:0,他引:11  
We have examined the compositional evolution of noncoding DNA in the primate genome by comparison of lineage-specific substitutions observed in 1.8 Mb of genomic alignments of human, chimpanzee, and baboon with 6542 human single-nucleotide polymorphisms (SNPs) rooted using chimpanzee sequence. The pattern of compositional evolution, measured in terms of the numbers of GC-->AT and AT-->GC changes, differs significantly between fixed and polymorphic sites, and indicates that there is a bias toward fixation of AT-->GC mutations, which could result from weak directional selection or biased gene conversion in favor of high GC content. Comparison of the frequency distributions of a subset of the SNPs revealed no significant difference between GC-->AT and AT-->GC polymorphisms, although AT-->GC polymorphisms in regions of high GC segregate at slightly higher frequencies on average than GC-->AT polymorphisms, which is consistent with a fixation bias favoring high GC in these regions. However, the substitution data suggest that this fixation bias is relatively weak, because the compositional structure of the human and chimpanzee genomes is becoming homogenized, with regions of high GC decreasing in GC content and regions of low GC increasing in GC content. The rate and pattern of nucleotide substitution in 333 Alu repeats within the human-chimpanzee-baboon alignments are not significantly affected by the GC content of the region in which they are inserted, providing further evidence that, since the time of the human-chimpanzee ancestor, there has been little or no regional variation in mutation bias.  相似文献   

4.
Reconstruction of ancestral DNA and amino acid sequences is an important means of inferring information about past evolutionary events. Such reconstructions suggest changes in molecular function and evolutionary processes over the course of evolution and are used to infer adaptation and convergence. Maximum likelihood (ML) is generally thought to provide relatively accurate reconstructed sequences compared to parsimony, but both methods lead to the inference of multiple directional changes in nucleotide frequencies in primate mitochondrial DNA (mtDNA). To better understand this surprising result, as well as to better understand how parsimony and ML differ, we constructed a series of computationally simple "conditional pathway" methods that differed in the number of substitutions allowed per site along each branch, and we also evaluated the entire Bayesian posterior frequency distribution of reconstructed ancestral states. We analyzed primate mitochondrial cytochrome b (Cyt-b) and cytochrome oxidase subunit I (COI) genes and found that ML reconstructs ancestral frequencies that are often more different from tip sequences than are parsimony reconstructions. In contrast, frequency reconstructions based on the posterior ensemble more closely resemble extant nucleotide frequencies. Simulations indicate that these differences in ancestral sequence inference are probably due to deterministic bias caused by high uncertainty in the optimization-based ancestral reconstruction methods (parsimony, ML, Bayesian maximum a posteriori). In contrast, ancestral nucleotide frequencies based on an average of the Bayesian set of credible ancestral sequences are much less biased. The methods involving simpler conditional pathway calculations have slightly reduced likelihood values compared to full likelihood calculations, but they can provide fairly unbiased nucleotide reconstructions and may be useful in more complex phylogenetic analyses than considered here due to their speed and flexibility. To determine whether biased reconstructions using optimization methods might affect inferences of functional properties, ancestral primate mitochondrial tRNA sequences were inferred and helix-forming propensities for conserved pairs were evaluated in silico. For ambiguously reconstructed nucleotides at sites with high base composition variability, ancestral tRNA sequences from Bayesian analyses were more compatible with canonical base pairing than were those inferred by other methods. Thus, nucleotide bias in reconstructed sequences apparently can lead to serious bias and inaccuracies in functional predictions.  相似文献   

5.
Patterns of transitional mutation biases within and among mammalian genomes   总被引:1,自引:0,他引:1  
Significant transition/transversion mutation bias is a well-appreciated aspect of mammalian nuclear genomes; however, patterns of bias among genes within a genome and among species remain largely uncharacterized. Understanding these patterns is important for understanding similarities and differences in mutational patterns among genomes and genomic regions. Therefore, we have conducted an analysis of 7,587 pairs of sequences of 4,347 mammalian protein-coding genes from seven species (human, mouse, rat, cow, sheep, pig, and macaque) and from the introns of 51 gene pairs and multiple intergenic regions (37 kbp, 52 kbp and 65 kbp) from the human, chimpanzee, and baboon genomes. Our analyses show that genes and regions with widely varying base composition exhibit uniformity of transition mutation rate both within and among mammalian lineages, as long as the transitional mutations caused by CpG hypermutability are excluded. The estimates show no relationship to potential intrachromosomal or interchromosomal effects. This uniformity points to similarity in point mutation processes in genomic regions with substantially different GC-content biases.  相似文献   

6.
DNA composition dynamics across genomes of diverse taxonomy is a major subject of genome analyses. DNA composition changes are characteristics of both replication and repair machineries. We investigated 3,611,007 single nucleotide polymorphisms (SNPs) generated by comparing two sequenced rice genomes from distant inbred lines (subspecies), including those from 242,811 introns and 45,462 protein-coding sequences (CDSs). Neighboring-nucleotide effects (NNEs) of these SNPs are diverse, depending on structural content-based classifications (genomewide, intronic, and CDS) and sequence context-based categories (A/C, A/G, A/T, C/G, C/T, and G/T substitutions) of the analyzed SNPs. Strong and evident NNEs and nucleotide proportion biases surrounding the analyzed SNPs were observed in 1-3 bp sequences on both sides of an SNP. Strong biases were observed around neighboring nucleotides of protein-coding SNPs, which exhibit a periodicity of three in nucleotide content, constrained by a combined effect of codon-related rules and DNA repair mechanisms. Unlike a previous finding in the human genome, we found negative correlation between GC contents of chromosomes and the magnitude of corresponding bias of nucleotide C at -1 site and G at +1 site. These results will further our understanding of the mutation mechanism in rice as well as its evolutionary implications.  相似文献   

7.
Here we study the evolution of nucleotide composition in third codon-positions of CO1 sequences of Chelicerata, using a phylogenetic framework, based on 180 taxa and three markers (CO1, 18S, and 28S rRNA; 5,218?nt). The analyses of nucleotide composition were also extended to all CO1 sequences of Chelicerata found in GenBank (1,701 taxa). The results show that most species of Chelicerata have a positive strand bias in CO1, i.e., in favor of C nucleotides, including all Amblypygi, Palpigradi, Ricinulei, Solifugae, Uropygi, and Xiphosura. However, several taxa show a negative strand bias, i.e., in favor of G nucleotides: all Scorpiones, Opisthothelae spiders and several taxa within Acari, Opiliones, Pseudoscorpiones, and Pycnogonida. Several reversals of strand-specific bias can be attributed to either a rearrangement of the control region or an inversion of a fragment containing the CO1 gene. Key taxa for which sequencing of complete mitochondrial genomes will be necessary to determine the origin and nature of mtDNA rearrangements involved in the reversals are identified. Acari, Opiliones, Pseudoscorpiones, and Pycnogonida were found to show a strong variability in nucleotide composition. In addition, both mitochondrial and nuclear genomes have been affected by higher substitution rates in Acari and Pseudoscorpiones. The results therefore indicate that these two orders are more liable to fix mutations of all types, including base substitutions, indels, and genomic rearrangements.  相似文献   

8.
Oilseed rape (Brassica napus) is an allotetraploid species consisting of two genomes, derived from B. rapa (A genome) and B. oleracea (C genome). The presence of these two genomes makes single nucleotide polymorphism (SNP) marker identification and SNP analysis more challenging than in diploid species, as for a given locus usually two versions of a DNA sequence (based on the two ancestral genomes) have to be analyzed simultaneously during SNP identification and analysis. One hundred amplicons derived from expressed sequence tag (ESTs) were analyzed to identify SNPs in a panel of oilseed rape varieties and within two sister species representing the ancestral genomes. A total of 604 SNPs were identified, averaging one SNP in every 42 bp. It was possible to clearly discriminate SNPs that are polymorphic between different plant varieties from SNPs differentiating the two ancestral genomes. To validate the identified SNPs for their use in genetic analysis, we have developed Illumina GoldenGate assays for some of the identified SNPs. Through the analysis of a number of oilseed rape varieties and mapping populations with GoldenGate assays, we were able to identify a number of different segregation patterns in allotetraploid oilseed rape. The majority of the identified SNP markers can be readily used for genetic mapping, showing that amplicon sequencing and Illumina GoldenGate assays can be used to reliably identify SNP markers in tetraploid oilseed rape and to convert them into successful SNP assays that can be used for genetic analysis.  相似文献   

9.
Lercher MJ  Hurst LD 《Gene》2002,300(1-2):53-58
One of the most abiding controversies in evolutionary biology concerns the role of neutral processes in molecular evolution. A main focus of the debate has been the evolution of isochores, the strong and systematic variation of base composition in mammalian genomes. One set of hypotheses argue that regions of similar GC are owing to localised mutational biases coupled with neutral evolution. The alternatives point to either selection or biased gene conversion as mechanisms to preferentially remove A or T bases, favouring G and C instead. Using a novel method, we compare models including such fixation biases to models based on mutation bias alone, under the assumption that non-coding, non-repetitive human DNA is at compositional equilibrium. While failing to fully explain the allele frequency distributions of recent single nucleotide polymorphism data, we show that the data are best fitted if the mutation bias is assumed to be constant across the genome, while fixation bias varies with GC content. We also attempt to estimate the strength of fixation bias, which increases linearly with increasing GC. Our approximation suggests that this force exists within the necessary parameter range: it is not so weak as to be drowned by random drift, but not so strong as to lead to exclusive use of G and C alone. Together these results demonstrate that mutation bias fails to explain the evolution of isochores, and suggest that either selection or biased gene conversion are involved.  相似文献   

10.
The male-specific region of the human Y chromosome (MSY) includes eight large inverted repeats (palindromes) in which arm-to-arm similarity exceeds 99.9%, due to gene conversion activity. Here, we studied one of these palindromes, P6, in order to illuminate the dynamics of the gene conversion process. We genotyped ten paralogous sequence variants (PSVs) within the arms of P6 in 378 Y chromosomes whose evolutionary relationships within the SNP-defined Y phylogeny are known. This allowed the identification of 146 historical gene conversion events involving individual PSVs, occurring at a rate of 2.9–8.4×10−4 events per generation. A consideration of the nature of nucleotide change and the ancestral state of each PSV showed that the conversion process was significantly biased towards the fixation of G or C nucleotides (GC-biased), and also towards the ancestral state. Determination of haplotypes by long-PCR allowed likely co-conversion of PSVs to be identified, and suggested that conversion tract lengths are large, with a mean of 2068 bp, and a maximum in excess of 9 kb. Despite the frequent formation of recombination intermediates implied by the rapid observed gene conversion activity, resolution via crossover is rare: only three inversions within P6 were detected in the sample. An analysis of chimpanzee and gorilla P6 orthologs showed that the ancestral state bias has existed in all three species, and comparison of human and chimpanzee sequences with the gorilla outgroup confirmed that GC bias of the conversion process has apparently been active in both the human and chimpanzee lineages.  相似文献   

11.
Analyses of the genetic relationships among modern humans, Neanderthals and Denisovans have suggested that 1–4% of the non-Sub-Saharan African gene pool may be Neanderthal derived, while 6–8% of the Melanesian gene pool may be the product of admixture between the Denisovans and the direct ancestors of Melanesians. In the present study, we analyzed single nucleotide polymorphism (SNP) diversity among a worldwide collection of contemporary human populations with respect to the genetic constitution of these two archaic hominins and Pan troglodytes (chimpanzee). We partitioned SNPs into subsets, including those that are derived in both archaic lineages, those that are ancestral in both archaic lineages and those that are only derived in one archaic lineage. By doing this, we have conducted separate examinations of subsets of mutations with higher probabilities of divergent phylogenetic origins. While previous investigations have excluded SNPs from common ancestors in principal component analyses, we included common ancestral SNPs in our analyses to visualize the relative placement of the Neanderthal and Denisova among human populations. To assess the genetic similarities among the various hominin lineages, we performed genetic structure analyses to provide a comparison of genetic patterns found within contemporary human genomes that may have archaic or common ancestral roots. Our results indicate that 3.6% of the Neanderthal genome is shared with roughly 65.4% of the average European gene pool, which clinally diminishes with distance from Europe. Our results suggest that Neanderthal genetic associations with contemporary non-Sub-Saharan African populations, as well as the genetic affinities observed between Denisovans and Melanesians most likely result from the retention of ancient mutations in these populations.  相似文献   

12.
Characterisation of single nucleotide polymorphisms in sugarcane ESTs   总被引:1,自引:0,他引:1  
Commercial sugarcane cultivars (Saccharum spp. hybrids) are both polyploid and aneuploid with chromosome numbers in excess of 100; these chromosomes can be assigned to 8 homology groups. To determine the utility of single nucleotide polymorphisms (SNPs) as a means of improving our understanding of the complex sugarcane genome, we developed markers to a suite of SNPs identified in a list of sugarcane ESTs. Analysis of 69 EST contigs showed a median of 9 SNPs per EST and an average of 1 SNP per 50 bp of coding sequence. The quantitative presence of each base at 58 SNP loci within 19 contiguous sequence sets was accurately and reliably determined for 9 sugarcane genotypes, including both commercial cultivars and ancestral species, through the use of quantitative light emission technology in pyrophosphate sequencing. Across the 9 genotypes tested, 47 SNP loci were polymorphic and 11 monomorphic. Base frequency at individual SNP loci was found to vary approximately twofold between Australian sugarcane cultivars and more widely between cultivars and wild species. Base quantity was shown to segregate as expected in the IJ76-514 × Q165 sugarcane mapping population, indicating that SNPs that occur on one or two sugarcane chromosomes have the potential to be mapped. The use of SNP base frequencies from five of the developed markers was able to clearly distinguish all genotypes in the population. The use of SNP base frequencies from a further six markers within an EST contig was able to help establish the likely copy number of the locus in two genotypes tested. This is the first instance of a technology that has been able to provide an insight into the copy number of a specific gene locus in hybrid sugarcane. The identification of specific and numerous haplotypes/alleles present in a genotype by pyrophosphate sequencing or alternative techniques ultimately will provide the basis for identifying associations between specific alleles and phenotype and between allele dosage and phenotype in sugarcane.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

13.
It has been recognized that genetic mutations in specific nucleotides may give rise to cancer via the alteration of signaling pathways. Thus, the detection of those cancer-causing mutations has received considerable interest in cancer genetic research. Here, we propose a statistical model for characterizing genes that lead to cancer through point mutations using genome-wide single nucleotide polymorphism (SNP) data. The basic idea of the model is that mutated genes may be in high association with their nearby SNPs because of evolutionary forces. By genotyping SNPs in both normal and cancer cells, we formulate a polynomial likelihood to estimate the population genetic parameters related to cancer, such as allele frequencies of cancer-causing alleles, mutation rates of alleles derived from maternal or paternal parents, and zygotic linkage disequilibria between different loci after the mutation occurs. We implement the EM algorithm to estimate some of these parameters because of the missing information in the likelihood construction. The model allows the elegant tests of the significant associations between mutated cancer genes and genome-wide SNPs, thus providing a way for predicting the occurrence and formation of cancer with genetic information. The model, validated through computer simulation, may help cancer geneticists design efficient experiments and formulate hypotheses for cancer gene identification.  相似文献   

14.
GC-biased gene conversion (gBGC) is a recombination-associated process that favors the fixation of G/C alleles over A/T alleles. In mammals, gBGC is hypothesized to contribute to variation in GC content, rapidly evolving sequences, and the fixation of deleterious mutations, but its prevalence and general functional consequences remain poorly understood. gBGC is difficult to incorporate into models of molecular evolution and so far has primarily been studied using summary statistics from genomic comparisons. Here, we introduce a new probabilistic model that captures the joint effects of natural selection and gBGC on nucleotide substitution patterns, while allowing for correlations along the genome in these effects. We implemented our model in a computer program, called phastBias, that can accurately detect gBGC tracts about 1 kilobase or longer in simulated sequence alignments. When applied to real primate genome sequences, phastBias predicts gBGC tracts that cover roughly 0.3% of the human and chimpanzee genomes and account for 1.2% of human-chimpanzee nucleotide differences. These tracts fall in clusters, particularly in subtelomeric regions; they are enriched for recombination hotspots and fast-evolving sequences; and they display an ongoing fixation preference for G and C alleles. They are also significantly enriched for disease-associated polymorphisms, suggesting that they contribute to the fixation of deleterious alleles. The gBGC tracts provide a unique window into historical recombination processes along the human and chimpanzee lineages. They supply additional evidence of long-term conservation of megabase-scale recombination rates accompanied by rapid turnover of hotspots. Together, these findings shed new light on the evolutionary, functional, and disease implications of gBGC. The phastBias program and our predicted tracts are freely available.  相似文献   

15.
Vanishing GC-rich isochores in mammalian genomes   总被引:25,自引:0,他引:25  
Duret L  Semon M  Piganeau G  Mouchiroud D  Galtier N 《Genetics》2002,162(4):1837-1847
To understand the origin and evolution of isochores-the peculiar spatial distribution of GC content within mammalian genomes-we analyzed the synonymous substitution pattern in coding sequences from closely related species in different mammalian orders. In primate and cetartiodactyls, GC-rich genes are undergoing a large excess of GC --> AT substitutions over AT --> GC substitutions: GC-rich isochores are slowly disappearing from the genome of these two mammalian orders. In rodents, our analyses suggest both a decrease in GC content of GC-rich isochores and an increase in GC-poor isochores, but more data will be necessary to assess the significance of this pattern. These observations question the conclusions of previous works that assumed that base composition was at equilibrium. Analysis of allele frequency in human polymorphism data, however, confirmed that in the GC-rich parts of the genome, GC alleles have a higher probability of fixation than AT alleles. This fixation bias appears not strong enough to overcome the large excess of GC --> AT mutations. Thus, whatever the evolutionary force (neutral or selective) at the origin of GC-rich isochores, this force is no longer effective in mammals. We propose a model based on the biased gene conversion hypothesis that accounts for the origin of GC-rich isochores in the ancestral amniote genome and for their decline in present-day mammals.  相似文献   

16.
In this study, we developed 359 detection primers for single nucleotide polymorphisms (SNPs) previously discovered within intron sequences of wheat genes and used them to evaluate SNP polymorphism in common wheat (Triticum aestivum L.). These SNPs showed an average polymorphism information content (PIC) of 0.18 among 20 US elite wheat cultivars, representing seven market classes. This value increased to 0.23 when SNPs were pre-selected for polymorphisms among a diverse set of 13 hexaploid wheat accessions (excluding synthetic wheats) used in the wheat SNP discovery project (). PIC values for SNP markers in the D genome were approximately half of those for the A and B genomes. D genome SNPs also showed a larger PIC reduction relative to the other genomes (P < 0.05) when US cultivars were compared with the more diverse set of 13 wheat accessions. Within those accessions, D genome SNPs show a higher proportion of alleles with low minor allele frequencies (<0.125) than found in the other two genomes. These data suggest that the reduction of PIC values in the D genome was caused by differential loss of low frequency alleles during the population size bottleneck that accompanied the development of modern commercial cultivars. Additional SNP discovery efforts targeted to the D genome in elite wheat germplasm will likely be required to offset the lower diversity of this genome. With increasing SNP discovery projects and the development of high-throughput SNP assay technologies, it is anticipated that SNP markers will play an increasingly important role in wheat genetics and breeding applications. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The CTLA-4 protein is expressed in activated T cells and plays an essential role in the immune response through its regulatory effect on T cell activation. Polymorphisms of the CTLA-4 gene have been correlated with autoimmune, neoplastic and infectious illnesses. This work aimed to verify possible associations between single nucleotide polymorphisms (SNPs) in CTLA-4, -318C/T in the promoter and +49A/G in exon 1 and paracoccidioidomycosis (PCM) caused by Paracoccidioides brasiliensis. For this purpose, 66 chronic form PCM patients and 76 healthy controls had their allele, genotype and haplotype frequencies determined. The genetic admixture structure of the patients and controls was evaluated to eliminate ancestral bias. The comparison of frequencies indicated no significant differences between patients and controls that could link the SNPs to PCM. Groups were admixture matched with no difference observed in population ancestry inference, indicating that the absence of association between CTLA-4 polymorphisms and PCM could not be attributed to ancestral bias. This study showed that there was no association between the CTLA-4 SNPs -318 and +49 and the resistance or susceptibility to PCM.  相似文献   

18.
董辉  钱海涛  柳晓利  丛斌 《昆虫知识》2011,48(1):167-173
单核苷酸多态性(single nucleotide polymorphisms,SNPs)主要是指在染色体基因组水平上由于单个核苷酸的变异而引起的DNA序列多态性,包括单碱基的转换或颠换引起的点突变,其中最少出现1种等位基因频率不小于1%,常以双等位基因的形式出现,稳定而可靠。在目前的昆虫基因组研究中,SNPs标记的研究主要集中在果蝇、蚊媒、家蚕等一些模式生物。本文对SNPs标记在昆虫的种类鉴定、遗传图谱构建、种群遗传学、抗药性分子机理等方面进行了综述,最后展望了SNPs在种群遗传、标记辅助选择和生物进化等研究领域中的应用前景。  相似文献   

19.
This study presents the first global, 1-Mbp-level analysis of patterns of nucleotide substitutions along the human lineage. The study is based on the analysis of a large amount of repetitive elements deposited into the human genome since the mammalian radiation, yielding a number of results that would have been difficult to obtain using the more conventional comparative method of analysis. This analysis revealed substantial and consistent variability of rates of substitution, with the variability ranging up to twofold among different regions. The rates of substitutions of C or G nucleotides with A or T nucleotides vary much more sharply than the reverse rates, suggesting that much of that variation is due to differences in mutation rates rather than in the probabilities of fixation of C/G vs. A/T nucleotides across the genome. For all types of substitution we observe substantially more hotspots than coldspots, with hotspots showing substantial clustering over tens of Mbp’s. Our analysis revealed that GC-content of surrounding sequences is the best predictor of the rates of substitution. The pattern of substitution appears very different near telomeres compared to the rest of the genome and cannot be explained by the genome-wide correlations of the substitution rates with GC content or exon density. The telomere pattern of substitution is consistent with natural selection or biased gene conversion acting to increase the GC-content of the sequences that are within 10–15 Mbp away from the telomere.Reviewing Editor: Dr. Jerzy Jurka
This revised version was published online in July 2005 with corrected page numbers.  相似文献   

20.
Ding C  Li R  Wang P  Jin P  Li S  Guo Z 《Mitochondrial DNA》2012,23(4):251-254
Accumulation of single nucleotide polymorphisms (SNPs) in the displacement loop (D-loop) of mitochondrial DNA (mtDNA) may be associated with an increased cancer risk. We investigated the lung cancer risk profile of D-loop SNPs in a case-controlled study. The minor alleles of nucleotides 235A/G and 324A/G were associated with an increased risk for lung cancer patients. The minor alleles of the nucleotides 151C/T, 200A/G, 524C/CA, and 16274G/A were specifically associated with the cancer risk of squamous cell carcinoma, whereas the minor allele of nucleotide 16298T/C was specifically associated with the risk of small cell lung cancer. In conclusion, SNPs in mtDNA are potential modifiers of lung cancer risk. The analysis of genetic polymorphisms in the mitochondrial D-loop can help identify subgroups of patients who are at a high risk of developing lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号