首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dysentery caused by Shigella species is characterized by infiltration of polymorphonuclear leucocytes (PMNs) into the colonic mucosa. Shigella spp. evolved into pathogens by the acquisition of virulence genes and by the deletion of 'antivirulence' genes detrimental to its pathogenic lifestyle. An example is cad A (encoding lysine decarboxylase), which is uniformly absent in Shigella spp., whereas it is present in nearly all isolates of the closely related non-pathogen Escherichia coli . Here, using monolayers of T84 cells to model the human intestinal epithelium, we determined that the introduction of cad A into S. flexneri and the expression of lysine decarboxylase attenuated the bacteria's ability to induce PMN influx across model intestinal epithelium. Such inhibition was caused by cadaverine generated from the decarboxylation of lysine. Cadaverine treatment of model intestinal epithelia specifically inhibited S. flexneri induction of PMN transepithelial migration, while having no effect on the ability of Salmonella or enteropathogenic E. coli (EPEC) to induce PMN migration. These observations not only provide insight into mechanisms of S. flexneri pathogen evolution and pathogenesis, but also suggest a potential for the use of cadaverine in the treatment of dysentery.  相似文献   

2.
The selC-associated SHI-2 pathogenicity island of Shigella flexneri   总被引:6,自引:0,他引:6  
Pathogenicity islands are chromosomal gene clusters, often located adjacent to tRNA genes, that encode virulence factors present in pathogenic organisms but absent or sporadically found in related non-pathogenic species. The selC tRNA locus is the site of integration of different pathogenicity islands in uropathogenic Escherichia coli, enterohaemorrhagic E. coli and Salmonella enterica. We show here that the selC locus of Shigella flexneri, the aetiological agent of bacterial dysentery, also contains a pathogenicity island. This pathogenicity island, designated SHI-2 (Shigella island 2), occupies 23.8 kb downstream of selC and contains genes encoding the aerobactin iron acquisition siderophore system, colicin V immunity and several novel proteins. Remnants of multiple mobile genetic elements are present in SHI-2. SHI-2-hybridizing sequences were detected in all S. flexneri strains tested and parts of the island were also found in other Shigella species. SHI-2 may allow Shigella survival in stressful environments, such as those encountered during infection.  相似文献   

3.
4.
5.
6.
Shigella dysenteriae type 1 and Shigella flexneri type 5b strains were isolated as causative agents of bacterial dysentery in a patient having visited South-East Asia. Both strains are a rare finding for Bulgaria. S. dysenteriae 1 strains have not been isolated since 1962, and there were only single isolates of S. flexneri 5b. The strains were of the same antibiotic resistance patterns. Conjugation experiments showed that resistance is determined by transferrable R-plasmids having identical characteristics. It is assumed that in the patient's gut transfer of an R-plasmid occurs from E. coli of the normal flora to the pathogenic shigellae.  相似文献   

7.
Bacillary dysentery arises when Shigella invades the colonic and rectal mucosae of the human gut and elicits a strong inflammatory response, which may lead to life-threatening complications. Hence, downregulation of the host inflammatory response is an appealing therapeutical alternative. The gastrointestinal tract is densely innervated, and nerve endings are often found in the vicinity of leukocytes. We have assessed the impact of experimental Shigella infection on levels of neuropeptides in the intestinal mucosa of rabbits. Ligated small intestinal loops were created in rabbits, and either live, pathogenic Shigella flexneri, a nonpathogenic mutant of Shigella, or NaCl was injected into the loops. Infection was allowed to proceed for 8 or 16 h, after which the rabbits were sacrificed and intestinal biopsies collected. Tissue destruction, fluid secretion and degree of bacterial invasion were monitored. Intestinal biopsies were homogenized, and levels of the neuropeptides calcitonin gene-related peptide, substance P, peptide YY (PYY), vasoactive intestinal peptide, somatostatin, galanin, motilin and neurotensin were measured by radioimmunoassay. Loops exposed to invasive Shigella had 5.7 times lower levels of PYY (P = 0.0095) than loops exposed to NaCl, after 16 h of infection. The levels of the other neuropeptides tested were unchanged. Inhibition of nicotinic cholinergic neurotransmission partly protected the intestinal mucosa from destruction elicited by invasive Shigella. These findings indicate that a tissue-invasive bacterium such as Shigella, which is strictly localized to the intestinal mucosa, activates intramural nerve reflexes that presumably involve a nicotinic synapse as well as the neuropeptide PYY.  相似文献   

8.
9.
It has been difficult to evaluate the protective efficacy of vaccine candidates against shigellosis, a major form of bacillary dysentery caused by Shigella spp. infection, because of the lack of suitable animal models. To develop a proper animal model representing human bacillary dysentery, guinea pigs were challenged with virulent Shigella flexneri serotype 2a (strains 2457T or YSH6000) or S. flexneri 5a (strain M90T) by the intrarectal (i.r.) route. Interestingly, all guinea pigs administered these Shigella strains developed severe and acute rectocolitis. They lost approximately 20% of their body weight and developed tenesmus by 24 h after Shigella infection. Shigella invasion and colonization of the distal colon were seen at 24 h but disappeared by 48 h following i.r. infection. Histopathological approaches demonstrated significant damage and destruction of mucosal and submucosal layers, thickened intestinal wall, edema, erosion, infiltration of neutrophils, and depletion of goblet cells in the distal colon. Furthermore, robust expression of IL-8, IL-1beta, and inducible NO synthase mRNA was detected in the colon from 6 to 24 h following Shigella infection. Most importantly, in our new shigellosis model, guinea pigs vaccinated with an attenuated S. flexneri 2a SC602 strain possessing high levels of mucosal IgA Abs showed milder symptoms of bacillary dysentery than did animals receiving PBS alone after Shigella infection. In the guinea pig, administration of Shigella by i.r. route induces acute inflammation, making this animal model useful for assessing the protective efficacy of Shigella vaccine candidates.  相似文献   

10.
11.
Shigellosis     
Shigellosis is a global human health problem. Four species of Shigella i.e. S. dysenteriae, S. flexneri, S. boydii and S. sonnei are able to cause the disease. These species are subdivided into serotypes on the basis of O-specific polysaccharide of the LPS. Shigella dysenteriae type 1 produces severe disease and may be associated with life-threatening complications. The symptoms of shigellosis include diarrhoea and/or dysentery with frequent mucoid bloody stools, abdominal cramps and tenesmus. Shigella spp. cause dysentery by invading the colonic mucosa. Shigella bacteria multiply within colonic epithelial cells, cause cell death and spread laterally to infect and kill adjacent epithelial cells, causing mucosal ulceration, inflammation and bleeding. Transmission usually occurs via contaminated food and water or through person-to-person contact. Laboratory diagnosis is made by culturing the stool samples using selective/differential agar media. Shigella spp. are highly fragile organism and considerable care must be exercised in collecting faecal specimens, transporting them to the laboratories and in using appropriate media for isolation. Antimicrobial agents are the mainstay of therapy of all cases of shigellosis. Due to the global emergence of drug resistance, the choice of antimicrobial agents for treating shigellosis is limited. Although single dose of norfloxacin and ciprofloxacin has been shown to be effective, they are currently less effective against S. dysenteriae type 1 infection. Newer quinolones, cephalosporin derivatives, and azithromycin are the drug of choice. However, fluoroquinolone-resistant S. dysenteriae type 1 infection have been reported. Currently, no vaccines against Shigella infection exist. Both live and subunit parenteral vaccine candidates are under development. Because immunity to Shigella is serotype-specific, the priority is to develop vaccine against S. dysenteriae type 1 and S. flexneri type 2a. Shigella species are important pathogens responsible for diarrhoeal diseases and dysentery occurring all over the world. The morbidity and mortality due to shigellosis are especially high among children in developing countries. A recent review of literature (Kotloff et al.,1999) concluded that, of the estimated 165 million cases of Shigella diarrhoea that occur annually, 99% occur in developing countries, and in developing countries 69% of episodes occur in children under five years of age. Moreover, of the ca.1.1 million deaths attributed to Shigella infections in developing countries, 60% of deaths occur in the under-five age group. Travellers from developed to developing regions and soldiers serving under field conditions are also at an increased risk to develop shigellosis.  相似文献   

12.
Shigella flexneri is the causative agent of bacillary dysentery and is a facultative intracellular pathogen. Its virulence regulon is subject to tight control by several mechanisms involving the products of over 20 genes and an array of environmental signals. The regulon is carried on a plasmid that is prone to instability and to integration into the chromosome, with associated silencing of the virulence genes. Closely related regulons are found in other species of Shigella and in enteroinvasive Escherichia coli . A wealth of detailed information is now available on the Shigella virulence gene control circuits, and it is becoming clear that these share many features with regulatory systems found in other bacterial pathogens. All of this makes the S. flexneri virulence gene control system a very attractive topic for those interested in the nature of gene regulatory networks in bacteria.  相似文献   

13.
Expression of flagella and motility by Shigella   总被引:6,自引:1,他引:5  
Since the discovery of Shigella as the aetiologic agent of acute dysentery almost 100 years ago, this organism has been described as a non-motile and non-flagellated organism that invades the human colonic mucosa. In this study, the production of flagella by prototypic strains of all four Shigella species and, moreover, by fresh clinical isolates was demonstrated by electron microscopy. The fla gellum of Sh igella (flash) is ∼10 µm long and 12–14 nm in diameter and is typically seen emanating from one pole of the bacterium. Flash is composed of a putative structural polypeptide subunit of 33–38 kDa that shares immunological similarities with Escherichia coli , Salmonella spp., and Proteus mirabilis flagellins, and with the recently described recombinant Shigella flagellins (FliCSS and FliCSF) expressed in E. coli K-12. A fliCSS -specific oligo probe hybridized with all four Shigella species, while a fliCSF probe hybridized with all Shigella flexneri and Shigella dysenteriae strains, but not with all Shigella sonnei or Shigella boydii strains, indicating genetic divergence among their flagellin genes. Shigella exhibits motility in low-concentration motility agar under physiological growth conditions. The expression of flash and motility appears to be strictly regulated by unidentified genetic and environmental factors. These heretofore undescribed features may allow the bacteria to circumvent the natural intestinal mucosal defences leading to bacterial colonization and disease. The motility of shigellae may represent an evolutionary adaptation important for bacterial survival.  相似文献   

14.
Shigella flexneri is a Gram-negative pathogen that invades and causes inflammatory destruction of the human colonic epithelium, thus leading to bloody diarrhea and dysentery. A type III secretion system that delivers effector proteins into target eukaryotic cells is largely responsible for cell and tissue invasion. However, the respective role of this invasive phenotype and of lipid A, the endotoxin of the Shigella LPS, in eliciting the inflammatory cascade that leads to rupture and destruction of the epithelial barrier, was unknown. We investigated whether genetic detoxification of lipid A would cause significant alteration in pathogenicity. We showed that S. flexneri has two functional msbB genes, one carried by the chromosome (msbB1) and the other by the virulence plasmid (msbB2), the products of which act in complement to produce full acyl-oxy-acylation of the myristate at the 3' position of the lipid A glucosamine disaccharide. A mutant in which both the msbB1 and msbB2 genes have been inactivated was impaired in its capacity to cause TNF-alpha production by human monocytes and to cause rupture and inflammatory destruction of the epithelial barrier in the rabbit ligated intestinal loop model of shigellosis, indicating that lipid A plays a significant role in aggravating inflammation that eventually destroys the intestinal barrier. In addition, neutralization of TNF-alpha during invasion by the wild-type strain strongly impaired its ability to cause rupture and inflammatory destruction of the epithelial lining, thus indicating that TNF-alpha is a major effector of epithelial destruction by Shigella.  相似文献   

15.
Yang F  Yang J  Zhang X  Chen L  Jiang Y  Yan Y  Tang X  Wang J  Xiong Z  Dong J  Xue Y  Zhu Y  Xu X  Sun L  Chen S  Nie H  Peng J  Xu J  Wang Y  Yuan Z  Wen Y  Yao Z  Shen Y  Qiang B  Hou Y  Yu J  Jin Q 《Nucleic acids research》2005,33(19):6445-6458
The Shigella bacteria cause bacillary dysentery, which remains a significant threat to public health. The genus status and species classification appear no longer valid, as compelling evidence indicates that Shigella, as well as enteroinvasive Escherichia coli, are derived from multiple origins of E.coli and form a single pathovar. Nevertheless, Shigella dysenteriae serotype 1 causes deadly epidemics but Shigella boydii is restricted to the Indian subcontinent, while Shigella flexneri and Shigella sonnei are prevalent in developing and developed countries respectively. To begin to explain these distinctive epidemiological and pathological features at the genome level, we have carried out comparative genomics on four representative strains. Each of the Shigella genomes includes a virulence plasmid that encodes conserved primary virulence determinants. The Shigella chromosomes share most of their genes with that of E.coli K12 strain MG1655, but each has over 200 pseudogenes, 300 approximately 700 copies of insertion sequence (IS) elements, and numerous deletions, insertions, translocations and inversions. There is extensive diversity of putative virulence genes, mostly acquired via bacteriophage-mediated lateral gene transfer. Hence, via convergent evolution involving gain and loss of functions, through bacteriophage-mediated gene acquisition, IS-mediated DNA rearrangements and formation of pseudogenes, the Shigella spp. became highly specific human pathogens with variable epidemiological and pathological features.  相似文献   

16.
Shigella flexneri is a Gram-negative facultatively intracellular pathogen responsible for bacillary dysentery in humans. More than one million deaths occur yearly due to infections with Shigella spp. and the victims are mostly children of the developing world. The pathogenesis of Shigella centres on the ability of this organism to invade the colonic epithelium where it induces severe mucosal inflammation. Much information that we have gained concerning the pathogenesis of Shigella has been derived from the study of in vitro models of infection. Using these techniques, a number of the molecular mechanisms by which Shigella invades epithelial cells and macrophages have been identified. In vivo models of shigellosis have been hampered since humans are the only natural hosts of Shigella. However, experimental infection of macaques as well as the murine lung and rabbit ligated ileal loop models have been important in defining some of the immune and inflammatory components of the disease. In particular, the murine lung model has shed light on the development of systemic and local immune protection against Shigella infection. It would be naive to believe that any one model of Shigella infection could adequately represent the complexity of the disease in humans, and more sophisticated in vivo models are now necessary. These models require the use of human cells and tissue, but at present such models remain in the developmental stage. Ultimately, however, it is with such studies that novel treatments and vaccine candidates for the treatment and prevention of shigellosis will be designed.  相似文献   

17.
Mechanosensitive channels play important roles in the physiology of many organisms, and their dysfunction can affect cell survival. This suggests that they might be therapeutic targets in pathogenic organisms. Pathogenic protozoa lead to diseases such as malaria, dysentery, leishmaniasis and trypanosomiasis that are responsible for millions of deaths each year worldwide. We analyzed the genomes of pathogenic protozoa and show the existence within them of genes encoding putative homologues of mechanosensitive channels. Entamoeba histolytica, Leishmania spp., Trypanosoma cruzi and Trichomonas vaginalis have genes encoding homologues of Piezo channels, while most pathogenic protozoa have genes encoding homologues of mechanosensitive small-conductance (MscS) and K+-dependent (MscK) channels. In contrast, all parasites examined lack genes encoding mechanosensitive large-conductance (MscL), mini-conductance (MscM) and degenerin/epithelial Na+ (DEG/ENaC) channels. Multiple sequence alignments of evolutionarily distant protozoan, amoeban, plant, insect and vertebrate Piezo channel subunits define an absolutely conserved motif that may be involved in channel conductance or gating. MscS channels are not present in humans, and the sequences of protozoan and human homologues of Piezo channels differ substantially. This suggests the possibility for specific targeting of mechanosensitive channels of pathogens by therapeutic drugs.  相似文献   

18.
Shigellosis is a major form of bacillary dysentery caused by Shigella spp. To date, there is no suitable animal model to evaluate the protective efficacy of vaccine candidates against this pathogen. Here, we describe a successful experimental shigellosis in the guinea-pig model, which has shown the characteristic features of human shigellosis. This model yielded reproducible results without any preparatory treatment besides cecal ligation. In this study, guinea-pigs were discretely infected with virulent Shigella dysenteriae type 1 and Shigella flexneri type 2a into the cecocolic junction after ligation of the distal cecum. All the experimental animals lost ~10% of their body weight and developed typical dysentery within 24-h postinfection. In the histological analysis, distal colon showed edema, hemorrhage, exudation and inflammatory infiltrations in the lamina propria. Orally immunized animals with heat-killed S. dysenteriae type 1 and S. flexneri type 2a strains showed high levels of serum immunoglobulin G (IgG) and mucosal IgA antibodies and conferred significant homologous protective immunity against subsequent challenges with the live strains. The direct administration of shigellae into the cecocolic junction induces acute inflammation, making this animal model useful for assessing shigellosis and evaluating the protective immunity of Shigella vaccine candidates.  相似文献   

19.
AIMS: To develop an immunocapture universal primer PCR (iUPPCR) combined with denaturing gradient gel electrophoresis (DGGE) and evaluate it as a method permitting rapid detection of Shigella species and their serotypes. METHODS AND RESULTS: This method amplifying the conserved regions of bacterial 16S rRNA genes of different species or serotypes of Shigella dysentery bacilli captured and enriched by polyvalent antibodies can detect and distinguish causative pathogens rapidly. Four serotypes from three Shigella species including Shigella dysenteriae serotype 1, Shigella boydii serotype 1, Shigella flexneri serotypes 1a and 3a were examined. CONCLUSION: Our approach could be adopted for not only axenic bacterial population but also mixed communities and achieve rapid detection of various bacteria from the same genus or species in one sample. SIGNIFICANCE AND IMPACT OF THE STUDY: The iUPPCR-DGGE method was shown to be more convenient than serotype-specific-antibody-based method of iUPPCR for Shigella species detection and it could be also applied to the quick detection for other kinds of pathogens with many serotypes.  相似文献   

20.
Shigella flexneri causes bacillary dysentery with symptoms resulting from the inflammation that accompanies bacterial entry into the cells of the colonic epithelium. The effectors of S. flexneri invasion are the Ipa proteins, particularly IpaB and IpaC, which are secreted at the host-pathogen interface following bacterial contact with a host cell. Of the purified Ipa proteins, only IpaC has been shown to possess quantifiable in vitro activities that are related to cellular invasion. In this study, ipaC deletion mutants were generated to identify functional regions within the IpaC protein. From these data, we now know that the N-terminus and an immunogenic central region are not required for IpaC-dependent enhancement of cellular invasion by S. flexneri. However, to restore invasiveness to an ipaC null mutant of S. flexneri, the N-terminus is essential, because IpaC mutants lacking the N-terminus are not secreted by the bacterium. Deletion of the central hydrophobic region eliminates IpaC's ability to interact with phospholipid membranes, and fusion of this region to a modified form of green fluorescent protein converts it into an efficient membrane-associating protein. Meanwhile, deletion of the C-terminus eliminates the mutant protein's ability to establish protein-protein contacts with full-length IpaC. Interestingly, the mutant form of ipaC that restores partial invasiveness to the S. flexneri ipaC null mutant also restores full contact-mediated haemolysis activity to this bacterium. These data support a model in which IpaC possesses a distinct functional organization that is important for bacterial invasion. This information will be important in defining the precise role of IpaC in S. flexneri pathogenesis and in exploring the potential effects of purified IpaC at mucosal surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号