首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New World squirrel monkeys (Saimiri spp.) have high circulating cortisol levels but normal electrolytes and blood pressures. The goal of the present study was to gain insight into adaptive mechanisms used by Bolivian squirrel monkeys to minimize the effects of high cortisol on mineralocorticoid receptor (MR) activity and electrolyte and water balance. Aldosterone levels in serum from 10 squirrel monkeys were 17.7 +/- 3.4 ng/dl (normal range in humans, 4 to 31 ng/dl), suggesting that squirrel monkeys do not exhibit a compensatory increase in aldosterone. The squirrel monkey MR was cloned and expressed in COS-7 cells and found to have similar responsiveness to cortisol and aldosterone as human MR, suggesting that squirrel monkey MR is not inherently less responsive to cortisol. To determine whether altered metabolism of cortisol might contribute to MR protection in squirrel monkeys, serum and urinary cortisol and cortisone were measured, and a comprehensive urinary corticosteroid metabolite profile was performed in samples from anesthetized and awake squirrel monkeys. The levels of cortisone exceeded those of cortisol in serum and urine, suggesting increased peripheral 11beta-hydroxysteroid dehydrogenase 2 activity in squirrel monkeys. In addition, a significant fraction (approximately 20%) of total corticosteroids excreted in the urine of squirrel monkeys appeared as 6beta-hydroxycortisol, compared with that in man (1%). Therefore, changes in cortisol metabolism likely contribute to adaptive mechanisms used by Bolivian squirrel monkeys to minimize effects of high cortisol.  相似文献   

2.
In squirrel monkeys (Saimiri spp.), cortisol circulates at levels much higher than those seen in man and other Old World primates, but squirrel monkeys exhibit no physiologic signs of the mineralocorticoid effects of cortisol. These observations suggest that squirrel monkeys have mechanisms for protection of the mineralocorticoid receptor (MR) from these high levels of cortisol. We previously showed that the serum cortisol to cortisone ratio in these animals is low relative to that in human serum, suggesting that production of the MR protective enzyme, 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), is increased in squirrel monkeys. Here, we directly evaluate whether increased production of 11beta-HSD2, which inactivates cortisol to cortisone, is a mechanism for protection of MR. In vitro assays showed that 11beta-HSD2 activity in squirrel monkey kidney microsomes was 3 to 7 times higher than that seen in kidney microsomes from pig or rabbit. 11beta-HSD2 protein detected by Western blot analysis was 4 to 9 times greater in squirrel monkey microsomes than in pig or rabbit microsomes. Comparison of the effect of expression of either human or squirrel monkey 11beta-HSD2 on MR transactivation activity showed similar inhibition of MR response to cortisol by both enzymes, indicating that the intrinsic activities of the human and squirrel monkey enzymes are similar. These findings suggest that one mechanism by which squirrel monkeys protect the MR from activation by high cortisol levels in the kidney is by upregulation of 11beta-HSD2 activity through increased production of the enzyme.  相似文献   

3.
The squirrel monkey, a representative New World primate, has high plasma cortisol and aldosterone concentrations when compared to Old World primates. We measured adrenal mitochondrial 11-hydroxylase (11-OHase) activity in squirrel monkeys and in two representative Old World species (cynomolgus and rhesus macaques) in an effort to explain these elevated plasma glucocorticoid and mineralocorticoid levels. The activity of 11-OHase was 5-fold higher in the squirrel monkey than in the Old World species tested. Calculated 11-OHase Vmax was different in the squirrel monkey and the cynomolgus. However, the Km values were similar in the New World primate when compared to cynomolgus. The ability of metyrapone to block 11-OHase was less in the former than in the latter. The data are consistent with the hypothesis that the squirrel monkey adrenal cortex possesses an increased number of 11-hydroxylase enzyme units compared to that of Old World primate species, and is therefore more efficient in producing cortisol. This difference in 11-OHase activity in the squirrel monkey, in addition to other previously reported adrenal steroidogenic enzyme alterations, may be adaptive in nature, favoring increased cortisol and aldosterone production in this and possibly other New World primate species.  相似文献   

4.
5.
Determination of squirrel monkey prolactin by immunoassay has been hampered by the lack of antiserum specific to prolactin from this species. As an alternate method, we have investigated whether the Nb2 lymphoma bioassay could be adapted for routine measurement of the lactogenic activity of samples of squirrel monkey serum. The growth of the Nb2 cells is absolutely dependent on the presence of lactogens in the culture medium. The cells were maintained in Fisher's medium supplemented with 10% horse serum, 10% fetal calf serum (FCS), and 10?4M β-mercaptoethanol. For each assay, the cells were plated at an initial density of 1 × 105 cells/ml in 22-mm 12-well dishes in the above medium, but devoid of FCS. Serum samples were heated to 56°C for 20 minutes to abolish the unusually high cytolytic complement activity of squirrel monkey serum and were incubated for 72 hours with Nb2 cells at serial dilutions from 1/40 to 1/2,560. Growth curves were generated with pooled samples of squirrel monkey serum, and the level of lactogenic activity was estimated using a calibration growth curve generated with known concentrations of purified rhesus monkey prolactin standard. We have found that the Nb2 lymphoma bioassay provides a sensitive and adaptable means for determination of lactogenic activity in the serum of the squirrel monkey.  相似文献   

6.
Squirrel monkeys are among a diverse group of New World primates that demonstrate unusually high levels of circulating corticosteroids and glucocorticoid receptor (GR) insensitivity. Recent evidence suggests that overexpression of an immunophilin impairs dexamethasone binding to GR in the Bolivian squirrel monkey (Saimiri boliviensis). Here we describe the cloning, expression, and functional characterization of GR from the closely related Guyanese squirrel monkey (S. sciureus). The cloned Guyanese squirrel monkey GR (gsmGR) cDNA closely resembles human GR (hGR) cDNA, and yields a high affinity dexamethasone binding receptor when expressed in COS-1 cells. Transactivation analysis of hGR and gsmGR expressed in CV-1 cells and cultured squirrel monkey kidney (SMK) cells indicates that: (1) SMK cells elaborate a functional high activity GR from human GR cDNA; (2) gsmGR is an order of magnitude less efficient than hGR at transactivation in CV-1 and SMK cells; and (3) maximal transactivation by gsmGR is attenuated in both cell lines. Glucocorticoid resistance in S. sciureus is at least partly attributable to a naturally occurring mutation in the GR gene that results in impaired GR transactivation.  相似文献   

7.
The goal of this study was to understand the basis for high androgen levels in squirrel monkeys (Saimiri spp.). Mass spectrometry was used to analyze serum testosterone, androstenedione, and dihydrotestosterone of male squirrel monkeys during the nonbreeding (n = 7) and breeding (n = 10) seasons. All hormone levels were elevated compared with those of humans, even during the nonbreeding season; the highest levels occurred during the breeding season. The ratio of testosterone to dihydrotestosterone in squirrel monkeys is high during the breeding season compared to man. Squirrel monkeys may have high testosterone to compensate for inefficient metabolism to dihydrotestosterone. We also investigated whether squirrel monkeys have high androgens to compensate for low-activity androgen receptors (AR). The response to dihydrotestosterone in squirrel monkey cells transfected with AR and AR-responsive reporter plasmids was 4-fold, compared with 28-fold in human cells. This result was not due to overexpression of cellular FKBP51, which causes glucocorticoid and progestin resistance in squirrel monkeys, because overexpression of FKBP51 had no effect on dihydrotestosterone-stimulated reporter activity in a human fibroblast cell line. To test whether the inherently low levels of FKBP52 in squirrel monkeys contribute to androgen insensitivity, squirrel monkey cells were transfected with an AR expression plasmid, an AR-responsive reporter plasmid, and a plasmid expressing FKBP52. Expression of FKBP52 decreased the EC50 or increased the maximal response to dihydrotestosterone. Therefore, the high androgen levels in squirrel monkeys likely compensate for their relatively low 5 alpha-reductase activity during the breeding season and AR insensitivity resulting from low cellular levels of FKBP52.  相似文献   

8.
The fine structural morphology of the male squirrel monkey adrenal cortex has been examined. When compared to other laboratory animals, the squirrel monkey adrenal cortex secretes large amounts of cortisol and maintains extraordinarily high plasma cortisol levels for prolonged periods of time. The normal cortical cells have numerous mitochondria with either a tubulo-vesicular or lamellar internal membrane arrangement, a well-developed agranular endoplasmic reticulum which is arranged in juxtaposition to mitochondria and lipid droplets, several lysosomes, and numerous thin-walled blood vessels of large caliber, suggestive of a rich blood flow through the gland. These characteristics have heretofore been associated with hypersecretion. Their presence in the squirrel monkey cortex, known to have high secretory activity, lends credence to the correlation of hyperdevelopment of the agranular reticulum with increased rates of secretion of corticoids. During chair restraint, the plasma cortisol levels rise two to three fold. Adrenocortical cells thus stressed exhibit a depletion and disorientation of membranes both of the agranular endoplasmic reticulum and mitochondria and a loss of ribosomes, lysosomes and, to some degree, intracellular lipid. The animal appears to be responding maximally to the stress of chair restraint. These fine structural characteristics are interpreted as an example of an adrenal cortex in the process of becoming functionally exhausted, since these animals sometimes do not survive the stress of chair restraint.  相似文献   

9.
The female squirrel monkey, Saimiri boliviensis, a New World monkey, has 10-day estrous cycles during the annual breeding season. Measurements of serum estradiol (E) concentrations in females housed with males in breeding pens revealed markedly higher levels than previously reported. Additionally, females in breeding pens appeared to have two distinct patterns of serum E peaks relative to the LH surge. Serum estrogen peaks averaging 5-fold greater than levels on the preceding day were observed on the same day as the LH surge, whereas other females had only a small E rise on the day of the LH surge followed by a 6-fold E rise on the next day. The serum progesterone (P) levels in all animals were depressed for 1-2 days before the LH surge but frequently started to rise on the day of the LH surge. The effect of the presence of a breeding male was examined by studying females housed in a group pen without exposure to a breeding male. In contrast to breeding-pen patterns, relatively small E rises were found in the 10 cycles observed. To further elucidate estrus-related E rises, a limited male-access paradigm was used to isolate mating-related hormone fluctuations. Pre-mating E levels had no marked rises; however, 4 h after mating, whether on the day of the LH surge or the next day, large E rises were found. These studies indicate that the LH surge in cycling squirrel monkeys is consistently preceded by a marked P nadir and associated with relatively small E rises.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Several substances such as anabolic androgenic steroids (AAS), peptide hormones like insulin‐like growth factor‐I (IGF‐I), aromatase inhibitors and estrogen antagonists are offered via the Internet, and are assumed without considering the potential deleterious effects that can be caused by their administration. In this study we aimed to determine if nandrolone and stanozolol, two commonly used AAS, could have an effect on Leydig cell tumor proliferation and if their effects could be potentiated by the concomitant use of IGF‐I. Using a rat Leydig tumor cell line, R2C cells, as experimental model we found that nandrolone and stanozolol caused a dose‐dependent induction of aromatase expression and estradiol (E2) production. When used in combination with IGF‐I they were more effective than single molecules in inducing aromatase expression. AAS exhibited estrogenic activity and induced rapid estrogen receptor (ER)‐dependent pathways involving IGF1R, AKT, and ERK1/2 phosphorylation. Inhibitors for these kinases decreased AAS‐dependent aromatase expression. Up‐regulated aromatase levels and related E2 production increased cell proliferation as a consequence of increased cyclin E expression. The observation that ER antagonist ICI182,780 was also able to significantly reduce ASS‐ and AAS + IGF‐induced cell proliferation, confirmed a role for estrogens in AAS‐dependent proliferative effects. Taken together these data clearly indicate that the use of high doses of AAS, as it occurs in doping practice, enhances Leydig cell proliferation, increasing the risk of tumor development. This risk is higher when AAS are used in association with IGF‐I. To our knowledge this is the first report directly associating AAS and testicular cancer. J. Cell. Physiol. 227: 2079–2088, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
Exemestane (FCE 24304; 6-methylenandrosta-1,4-diene-3,17-dione) is a novel orally active irreversible aromatase inhibitor. Its in vitro and in vivo pharmacological properties have been compared to 4-hydroxyandrostenedione (4-OHA). In preincubation studies with human placental aromatase, exemestane, like 4-OHA, showed enzyme inactivating properties with a similar affinity (Ki 26 vs 29 nM) and a lower rate of inactivation (t1/2 13.9 vs 2.1 min). Conversely, when tested in pregnant mares' serum gonadotropin-treated rats, exemestane was more potent in reducing microsomal ovarian aromatase activity than 4-OHA, after both subcutaneous (ED50 1.8 vs 3.1 mg/kg) and oral dosing (ED50 3.7 vs greater than 100 mg/kg). No interference of exemestane on desmolase or 5 alpha-reductase activity was found. The compound did not show any relevant binding affinity to steroidal receptors, but slight binding to the androgen receptor (approximately 0.2% of dihydrotestosterone), like 4-OHA. In the first phase I trial, healthy postmenopausal volunteers were given single oral doses of exemestane, ranging from 0.5 to 800 mg, and plasma [estrone (E1), estradiol (E2) and estrone sulphate (E1S)] and urinary estrogens (E1 and E2) were measured up to 5-8 days. The minimal effective dose in decreasing estrogens was 5 mg. At 25 mg the maximal suppression was observed at day 3: plasma estrogens fell to 35 (E1), 39 (E2) and 28% (E1S), and urinary estrogens fell to 20 (E1) and 25% (E2) of basal values, these effects still persisting on day 5. No effects on plasma levels of cortisol, aldosterone, 17-hydroxyprogesterone, DHEAS, LH and FSH, and no significant adverse events were observed up to the highest tested dose of 800 mg exemestane.  相似文献   

12.
13.
Aromatase in the normal breast and breast cancer   总被引:9,自引:0,他引:9  
Adipose tissue and muscle constitute the larger proportion of body mass, and therefore aromatization in these tissues is the major source of circulating estrogens in postmenopausal women. Although plasma estrogen concentrations are very low, levels in breast cancers from postmenopausal patients are reported to be 10-fold higher than in plasma and normal tissue. Whereas studies on aromatase activity in the tumor suggest that estrogen may be produced locally, the significance of this contribution has been questioned. Using immunocytochemistry (ICC) to an anti-aromatase antibody, a relatively strong immunoreaction was detected in tumor epithelial cells as well as in the terminal ductal lobular units (TDLUs) of the normal breast. Aromatase expression was detected in the cytoplasm of tumor epithelial cells and the surrounding stromal cells of over 50% of tumors in a series of 19 breast cancers. In situ hybridization (ISH) to aromatase mRNA confirmed the immunocytochemical result that the epithelial cells are the primary site of estrogen synthesis in the breast and breast cancers. In the 10 tumors which showed immunoreaction to aromatase, the average aromatase activity measured in cryosections was 286.5 ± 18.6 fmol estrogen/mg protein/h (SE), whereas in nine tumors with weak aromatase immunoreaction, the enzyme activity was 154.7 ± 19.3 fmol estrogen/mg protein/h (P < 0.05) (SE). The functional significance of tumor aromatase and locally produced estrogens on the growth of tumors was suggested by the correlation between aromatase activity and proliferating cell nuclear antigen (PCNA), a marker of cell proliferation (P < 0.005). Although intratumoral aromatase activity did not correlate with steroid receptors significantly, there was a trend for estrogen receptor (ER)-positive tumors to express aromatase. In addition, proliferation ([3H]-thymidine incorporation into DNA) during histoculture, was increased by both estradiol and testosterone in tumors with high aromatase activity. Our results suggest that some tumors synthesize sufficient estrogen to stimulate their proliferation. It may thus be important to inhibit tumor aromatase as well as to reduce circulating levels of estrogen for effective breast cancer treatment.  相似文献   

14.
The selective estrogen enzyme modulators in breast cancer: a review   总被引:13,自引:0,他引:13  
It is well established that increased exposure to estradiol (E(2)) is an important risk factor for the genesis and evolution of breast tumors, most of which (approximately 95-97%) in their early stage are estrogen-sensitive. However, two thirds of breast cancers occur during the postmenopausal period when the ovaries have ceased to be functional. Despite the low levels of circulating estrogens, the tissular concentrations of these hormones are significantly higher than those found in the plasma or in the area of the breast considered as normal tissue, suggesting a specific tumoral biosynthesis and accumulation of these hormones. Several factors could be implicated in this process, including higher uptake of steroids from plasma and local formation of the potent E(2) by the breast cancer tissue itself. This information extends the concept of 'intracrinology' where a hormone can have its biological response in the same organ where it is produced. There is substantial information that mammary cancer tissue contains all the enzymes responsible for the local biosynthesis of E(2) from circulating precursors. Two principal pathways are implicated in the last steps of E(2) formation in breast cancer tissues: the 'aromatase pathway' which transforms androgens into estrogens, and the 'sulfatase pathway' which converts estrone sulfate (E(1)S) into E(1) by the estrone-sulfatase. The final step of steroidogenesis is the conversion of the weak E(1) to the potent biologically active E(2) by the action of a reductive 17beta-hydroxysteroid dehydrogenase type 1 activity (17beta-HSD-1). Quantitative evaluation indicates that in human breast tumor E(1)S 'via sulfatase' is a much more likely precursor for E(2) than is androgens 'via aromatase'. Human breast cancer tissue contains all the enzymes (estrone sulfatase, 17beta-hydroxysteroid dehydrogenase, aromatase) involved in the last steps of E(2) biosynthesis. This tissue also contains sulfotransferase for the formation of the biologically inactive estrogen sulfates. In recent years, it was demonstrated that various progestins (promegestone, nomegestrol acetate, medrogestone, dydrogesterone, norelgestromin), tibolone and its metabolites, as well as other steroidal (e.g. sulfamates) and non-steroidal compounds, are potent sulfatase inhibitors. Various progestins can also block 17beta-hydroxysteroid dehydrogenase activities. In other studies, it was shown that medrogestone, nomegestrol acetate, promegestone or tibolone can stimulate the sulfotransferase activity for the local production of estrogen sulfates. All these data, in addition to numerous agents which can block the aromatase action, lead to the new concept of 'Selective Estrogen Enzyme Modulators' (SEEM) which can largely apply to breast cancer tissue. The exploration of various progestins and other active agents in trials with breast cancer patients, showing an inhibitory effect on sulfatase and 17beta-hydroxysteroid dehydrogenase, or a stimulatory effect on sulfotransferase and consequently on the levels of tissular levels of E(2), will provide a new possibility in the treatment of this disease.  相似文献   

15.
The present work was done to investigate the cell localization of testicular aromatase activity and its regulation in immature pig testis using an in vitro model. Leydig cells and Sertoli cells were isolated from immature pig testes and cultured alone or together in the absence or presence of human chorionic gonadotropin (hCG) or porcine follicle-stimulating hormone (pFSH) for 2 days. At the end of incubation, the amounts of testosterone (T), estrone sulfate (E1S) and estradiol (E2) were measured. Then the cells were incubated for 4 h in the presence of saturating concentrations of delta 4-androstenedione (3 microM) and the amounts of E1S and E2 were measured again (aromatase activity). The ability of Sertoli cells to produce estrogens was very low and neither hCG nor pFSH had any significant effect. hCG stimulated, in a dose-dependent manner, the secretion of T and E1S by Leydig cells cultured alone as well as the aromatase activity of these cells. The main estrogen produced by Leydig cells was E1S. pFSH also stimulated the above parameters of Leydig cell function; this may have been due to the contamination of this hormone with luteinizing hormone (LH). Coculture of Leydig cells with Sertoli cells without gonadotropins had very small effects on T and E1S production and on aromatase activity. However, treatment of coculture with increasing concentrations of hCG had a dramatic effect on Leydig cell functions. For each hCG concentration, the amounts of T and E1S secreted, as well as the aromatase activity of the coculture, were 2- to 3-fold higher than those of Leydig cells cultured alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In vitro study of testosterone (T) metabolism shows that formation of estradiol-17 beta (E2) is regionally specific within the preoptic area (POA) of the male ring dove. The POA is known to be involved in the formation of E2 required for specific components of male sexual behavior. Two sub-areas of high aromatase activity, anterior (aPOA) and posterior preoptic (pPOA) areas, have been identified. Aromatase activity is higher in aPOA than in pPOA. The aromatase activity within the aPOA is also more sensitive to the inductive effects of low circulating T, derived from subcutaneous silastic implants, than the enzyme activity in pPOA. Kinetic analysis of preoptic fractions indicates that a similar high-affinity enzyme occurs in both areas (apparent Km less than 14 nM), but the Vmax of aPOA enzyme activity is higher than pPOA. Cells containing estrogen receptors (ER) are localized in areas of high aromatase activity. There is overlap between immunostained cells in the aPOA and in samples containing inducible aromatase activity measured in vitro. Within the aPOA there is a higher density of ER cells in the nucleus preopticus medialis. The pPOA area also contains ER, notably in the nucleus interstitialis, but at a lower density. We conclude that the hormonal regulation of the male preoptic-anterior hypothalamic region, which is a target for the behavioral action of T, involves at least two inducible aromatase systems with associated estrogen receptor cells.  相似文献   

17.
A seasonal variation in the urinary catecholamines output has been demonstrated in two simians kept under constant ambient conditions : the nocturnal Aotus and the diurnal Sa?miri sciureus. In Aotus, catecholamines output (NA + A), in spring, is higher than in other Primates including man and even more so in winter. Cold exposure increases the NA + A excretion in Aotus as it does in squirrel monkey and rat but the A output is particularly prominent in Sa?miri. Fasting does not alter significantly the catecholamines excretion. Associated fasting and cold exposure do not modify the adrenosympathetic response observed in Aotus in cold conditions alone, but depresses the sympathetic activity and greatly enhance the adrenomedullary excretion in squirrel monkey, as it is the case in rat. Associated fasting and cold represents a highly stressful situation for squirrel monkey but not for night monkey. Catecholamines metabolites (MN, NMN, DOPAC, HVA, VMA and MHPG) are found in urine of both species, DOPAC and VMA being predominant in Aotus but DOPAC and MHPG in Sa?miri. The proportions of conjugated forms vary according to the metabolite : DOPAC and VMA are mainly under free form but NMN, MN and MHPG are mostly conjugated in both species. The daily output of pooled adrenergic metabolites (expressed as ng/mg creatinine) is higher in Aotus than in Sa?miri and man. Both monkey species display a high adrenosympathetic activity which does not correlate with their resting metabolic rate.  相似文献   

18.
Summary Detailed studies have been made on the distribution of several enzymes in the muscle spindles of the hand and foot interosseous muscles and M. longissimus dorsi of the rhesus monkey as well as in those of the hand interosseous muscles of the squirrel monkey. The intrafusal muscle fibers (IMF) of the rhesus monkey can be classified into two types by the reaction intensity at the polar regions for adenosine triphosphatases and by the enzymes concerning the carbohydrate metabolism except glucose-6-phosphate dehydrogenase, while the extrafusal muscle fibers (EMF) show three types of reactions for the enzymes of the Embden-Meyerhof pathway and the tricarboxylic acid (TCA) cycle. The IMF and EMF of the squirrel monkey are more variable than those of the rhesus monkey for the glycogen breakdown enzyme. It is possible that the small IMF are more capable of energy production through the TCA cycle than the large IMF and the EMF in both species. The positive cholinesterases reactions are found around the polar regions of the IMF, while only the rim of the equator of the IMF shows monoamine oxidase activity. The pericapsular epithelial cells of the muscle spindle seem to be metabolically similar to the perineural epithelial cells.Visiting scientist from the Department of Anatomy, Tokyo Medical and Dental University, Tokyo, Japan. T. R. Shanthaveerappa in previous publications.  相似文献   

19.
Serial measurements of estradiol (E2) and progesterone (P) were used to describe the ovarian cycle of the Bolivian squirrel monkey. Group-caged, sexually mature female squirrel monkeys, housed with males, were sampled daily between 0900 and 1100 hr. Sampling was carried out during the breeding and nonbreeding seasons, for periods of 19–20 days from September 1981 to May 1982. Seasonal differences in serum concentrations of E2 and P were found with low levels of E2 and P and an absence of preovulatory surges of E2 during the nonbreeding season. This pattern was also observed in some animals during the breeding season. An abrupt increase in serum P concentrations in December appeared to signal the onset of cycling. Cycling animals had well-defined peaks of E2 (450–9,500 pg/ml) followed by increasing levels of P, which were >200 ng/ml in some animals. After the breeding season, E2 and P levels returned to their initially low levels. Levels of both steroids in cycling animals were higher than those reported for other primates and for previous measurements made in squirrel monkeys. Cycle length based on time interval between consecutive E2 peaks varied from 6–12 days.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号