首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypothermia before and/or during no-flow ischemia promotes cardiac functional recovery and maintains mRNA expression for stress proteins and mitochondrial membrane proteins (MMP) during reperfusion. Adaptation and protection may occur through cold-induced change in anaerobic metabolism. Accordingly, the principal objective of this study was to test the hypothesis that hypothermia preserves myocardial function during hypoxia and reoxygenation. Hypoxic conditions in these experiments were created by reducing O2 concentration in perfusate, thereby maintaining or elevating coronary flow (CF). Isolated Langendorff-perfused rabbit hearts were subjected to perfusate (Po2 = 38 mmHg) with glucose (11.5 mM) and perfusion pressure (90 mmHg). The control (C) group was at 37 degrees C for 30 min before and 45 min during hypoxia, whereas the hypothermia (H) group was at 29.5 degrees C for 30 min before and 45 min during hypoxia. Reoxygenation occurred at 37 degrees C for 45 min for both groups. CF increased during hypoxia. The H group markedly improved functional recovery during reoxygenation, including left ventricular developed pressure (DP), the product of DP and heart rate, dP/dtmax, and O2 consumption (MVo2) (P < 0.05 vs. control). MVo2 decreased during hypothermia. Lactate and CO2 gradients across the coronary bed were the same in C and H groups during hypoxia, implying similar anaerobic metabolic rates. Hypothermia preserved MMP betaF1-ATPase mRNA levels but did not alter adenine nucleotide translocator-1 or heat shock protein-70 mRNA levels. In conclusion, hypothermia preserves cardiac function after hypoxia in the hypoxic high-CF model. Thus hypothermic protection does not occur exclusively through cold-induced alterations in anaerobic metabolism.  相似文献   

2.
The combined modalities of potassium arrest and local cardiac hypothermia were used for myocardial protection in 82 patients. The cardioplegic solution used was Ringer's lactate to which potassium chloride and sodium bicarbonate were added so that the final solution had a pH of 7.5 and 30 meq/liter potassium. The myocardium was cooled externally by cold Ringer's lactate at 4 °C and through coronary circulation by cold cardioplegic solution at 8 °C. The myocardial temperature was continuously monitored and kept between 12 and 18 °C. Moderate systemic hypothermia was used (26 to 30 °C). Eighty-two patients have been operated upon using this technique. Eighteen patients had single or double valve replacements, 4 had valve replacements with coronary bypass, and 60 had coronary bypass procedures. The operating conditions have been excellent and the myocardial protection offered by this technique has been good. Perioperative myocardial infarctions, as diagnosed by ECG and CPK (MB isoenzymes) and myocardial scans, were seen in 6 patients. In conclusion the combined modalities of potassium arrest and local cardiac hypothermia give excellent myocardial protection during cardiac surgery.  相似文献   

3.

Background

Mild therapeutic hypothermia following cardiac arrest is neuroprotective, but its effect on myocardial dysfunction that is a critical issue following resuscitation is not clear. This study sought to examine whether hypothermia and the combination of hypothermia and pharmacological postconditioning are cardioprotective in a model of cardiopulmonary resuscitation following acute myocardial ischemia.

Methodology/Principal Findings

Thirty pigs (28–34 kg) were subjected to cardiac arrest following left anterior descending coronary artery ischemia. After 7 minutes of ventricular fibrillation and 2 minutes of basic life support, advanced cardiac life support was started according to the current AHA guidelines. After successful return of spontaneous circulation (n = 21), coronary perfusion was reestablished after 60 minutes of occlusion, and animals were randomized to either normothermia at 38°C, hypothermia at 33°C or hypothermia at 33°C combined with sevoflurane (each group n = 7) for 24 hours. The effects on cardiac damage especially on inflammation, apoptosis, and remodeling were studied using cellular and molecular approaches. Five animals were sham operated. Animals treated with hypothermia had lower troponin T levels (p<0.01), reduced infarct size (34±7 versus 57±12%; p<0.05) and improved left ventricular function compared to normothermia (p<0.05). Hypothermia was associated with a reduction in: (i) immune cell infiltration, (ii) apoptosis, (iii) IL-1β and IL-6 mRNA up-regulation, and (iv) IL-1β protein expression (p<0.05). Moreover, decreased matrix metalloproteinase-9 activity was detected in the ischemic myocardium after treatment with mild hypothermia. Sevoflurane conferred additional protective effects although statistic significance was not reached.

Conclusions/Significance

Hypothermia reduced myocardial damage and dysfunction after cardiopulmonary resuscitation possible via a reduced rate of apoptosis and pro-inflammatory cytokine expression.  相似文献   

4.
Ultra profound hypothermia (4 to 10 degrees C) is an experimental method aiming at safely prolonging organ and total body preservation. For this purpose, Hypothermosol (HTS), an investigational acellular solution for blood substitution, was demonstrated to be beneficial in animal models undergoing cardiopulmonary bypass. We investigated the beneficial versus deleterious effects of cold preservation and the role of HTS on isolated coronary arteries (CA) during cold exposure, rewarming, and post-rewarming exposure to anoxia. Newborn lamb CA rings were studied using a tissue bath technique. CA were subjected to cold (7 degrees C for 3 h) and treated with either Krebs' buffer (Krebs/hypothermia) or HTS (HTS/hypothermia) (n = 15 each). A third group maintained at 37 degrees C (Krebs/normothermia) (n = 18) served as a time control. After rewarming (37 degrees C), precontracted CA were exposed to anoxia. In Krebs/hypothermia a substantial hypercontraction (g) occurred during rewarming (1.21+/-0.07) (mean +/- SEM) but not in HTS/hypothermia (0.79+/-0.03); P<0.05. Precontraction force generated by indomethacin/U46619 was identical in all three groups. However, Krebs/hypothermia vessels demonstrated a significantly higher relative vasoconstriction (percentage) in the early (approximately 10 min) and late (30 min) anoxia exposure than the HTS/hypothermia and time control (119.5%+/- 3.7 vs. 109.5%+/-4.4 and 101.5%+/-3, and 71%+/-7.6 vs. 38.9%+/-7 and 51.5%+/-5.9, respectively; P<0.05). In conclusion, Ultra profound hypothermia promotes coronary vasoconstriction upon rewarming, which is detrimental to relaxant response to hypoxia. Both phenomena are alleviated by performing ultra profound hypothermia under HTS protection.  相似文献   

5.
In this study we evaluated whether gradual rewarming after the period of cold ischemia would improve organ quality in an Isolated Perfused Kidney Model. Left rat kidneys were statically cold stored in University of Wisconsin solution for 24 hours at 4°C. After cold storage kidneys were rewarmed in one of three ways: perfusion at body temperature (38°C), or rewarmed gradually from 10°C to 38°C with stabilization at 10°C for 30 min and rewarmed gradually from 10°C to 38°C with stabilization at 25°C for 30 min. In the gradual rewarming groups the pressure was increased stepwise to 40 mmHg at 10°C and 70 mmHg at 25°C to counteract for vasodilatation leading to low perfusate flows. Renal function parameters and injury biomarkers were measured in perfusate and urine samples. Increases in injury biomarkers such as aspartate transaminase and lactate dehydrogenase in the perfusate were lower in the gradual rewarming groups versus the control group. Sodium re-absorption was improved in the gradual rewarming groups and reached significance in the 25°C group after ninety minutes of perfusion. HSP-70, ICAM-1, VCAM-1 mRNA expressions were decreased in the 10°C and 25°C groups. Based on the data kidneys that underwent gradual rewarming suffered less renal parenchymal, tubular injury and showed better endothelial preservation. Renal function improved in the gradual rewarming groups versus the control group.  相似文献   

6.

Objective

Cardiac vein arterialization is seldom applied for treating right coronary artery disease. This study aimed to improve outcomes of cardiac vein arterialization in a porcine model using intramammary artery anastomosis.

Methods

A chronic, stenotic coronary artery model was established in 12 of 14 Chinese experimental miniature pigs of either sex, which were randomly divided into equal control (n = 6) and experimental (n = 6) groups. In experimental animals, blood flow was reconstructed in the right coronary artery using intramammary artery. Arterialization involved dissection of right internal mammary artery from bifurcation to apex of thorax followed by end-to-side anastomosis of internal mammary artery and middle cardiac vein plus posterior descending branch of right coronary artery. Intraoperative heart rate was maintained at 110 beats/min. Graft flow assessment and echocardiography were performed when blood pressure and heart rate normalized.

Results

The experimental group had significantly higher mean endocardial and epicardial blood flow postoperatively than control group (mean endocardial blood flow: 0.37 vs. 0.14 ml/(g*min), p<0.001; mean epicardial blood flow: 0.29 vs. 0.22, p = 0.014). Transmural blood flow was also higher in experimental group than in control group (0.33 vs. 0.19, p<0.001); ejection fraction increased from 0.46% at baseline to 0.51% (p = 0.0038) at 6 hours postoperatively, and mean blood flow of internal mammary artery was 44.50, perfusion index 0.73 at postoperative 6 months, 43.33 and 0.80 at 3 months.

Conclusion

Successful cardiac vein arterialization via intramammary artery in a porcine model suggests that this may be a viable method for reconstructing blood flow in chronic, severe coronary artery disease.  相似文献   

7.
Mild hypothermia reduces myocardial infarct size in small animals; however, the extent of myocardial protection in large animals with greater thermal mass remains unknown. We evaluated the effects of mild endovascular cooling on myocardial temperature, infarct size, and cardiac output in 60- to 80-kg isoflurane-anesthetized pigs. We occluded the left anterior descending coronary artery for 60 min, followed by reperfusion for 3 h. An endovascular heat-exchange catheter was used to either lower core body temperature to 34 degrees C (n = 11) or maintain temperature at 38 degrees C (n = 11). Additional studies assessed myocardial viability and microvascular perfusion with (99m)Tc-sestamibi autoradiography. Endovascular cooling reduced infarct size compared with normothermia (9 +/- 6% vs. 45 +/- 8% of the area at risk; P < 0.001), whereas the area at risk was comparable (19 +/- 3% vs. 20 +/- 7%; P = 0.65). Salvaged myocardium showed normal sestamibi uptake, confirming intact microvascular flow and myocyte viability. Cardiac output was maintained in hypothermic hearts because of an increase in stroke volume, despite a decrease in heart rate. Mild endovascular cooling to 34 degrees C lowers myocardial temperature sufficiently in human-sized hearts to cause a substantial cardioprotective effect, preserve microvascular flow, and maintain cardiac output.  相似文献   

8.
The ability of mild hypothermia (MH; 34 degrees C) to protect against postischemic endothelial injury and decrease reactive oxygen species' (ROS) formation was studied using lucigenin and luminol enhanced chemiluminescence (CL). Lucigenin CL is largely specific for superoxide, while luminol reacts with many ROS. Isolated rat livers perfused under constant flow in a non-recirculating system were exposed to 2.5 h of ischemia after 0.5 h perfusion with Krebs-Henseleit buffer at either normothermia (38 degrees C) or mild hypothermia (34 degrees C) (n = 5, all groups). CL (cps), vascular resistance (Woods units), O2 consumption, and potassium efflux were measured at the end of perfusion, and at 0 min reperfusion, and every 30 min during reperfusion. For both the lucigenin and luminol groups, CL and vascular resistance increased significantly (repeat measures ANOVA, P <0.05) for normothermia (NT, 38 degrees C) but not mild hypothermia. Potassium efflux did not change significantly for the mild hypothermia groups. In the luminol enhanced group, oxygen consumption was greater in the mildly hypothermic group at 1 h and 1.5 h of reperfusion. Mild hypothermia decreased postischemic ROS production. Increased vascular resistance in the normothermia group may indicate an endothelial injury. Mild hypothermia appears to protect against this injury.  相似文献   

9.
Hepatocytes of adult eels acclimated to 5° C, 10° C and 20° C, respectively were isolated by perfusion of the liver with collagenase. The liver-somatic index and the protein content of liver cells showed significantly higher values in fish kept at the lower temperatures. However, in the adenine nucleotide content and energy charge no significant differences were observed between the 5° C and the 20° C acclimation groups. The incorporation of radioactivity from a 14C-labelled amino acid mixture into perchloric acid precipitates was used as an estimate of over-all protein synthesis. When eel hepatocytes were incubated in Hanks' solution containing tracer amounts of amino acids, labelling of perchloric acid precipitates showed linear time courses over at least 60 min at 10° C and 20° C assay temperatures. The total cellular radioactivity, however, exhibited non-linear time courses. In the measurement range from 5° C to 25° C Arrhenius plots of protein labelling exhibited a discontinuity in both groups of fish. Hepatocytes from 10° C-acclimated eel showed almost twice the incorporation rates of amino acids as those from the 20° C-acclimated fish. It is concluded that high temperature dependencies in the low temperature range require an increase in the capacity of the apparatus for protein synthesis during cold acclimation.  相似文献   

10.
The efficiency of a preservation medium, histidine-buffered lactobionate solution (HBLS), was determined by measuring post-ischemic recoveries of ATP and intracellular pH under Krebs-Henseleit buffer (KHB) perfusion. We used NMR spectroscopy to study the effect of 24-h cold ischemia, followed by 4°C then 37°C reperfusion on the isolated rat liver. Three media were compared: University of Wisconsin solution (UW-lactobionate); Bretschneider's solution (HTK); HBLS and HBLS supplemented with 2 mM Gly and 2 mM Cys (HBLSg2) or with 10 mM Gly and 2 mM Cys (HBLSg10). All values were compared to control values measured during pre-ischemic cold perfusion with KHB (ATP = 8.60 ± 0.6 μmol/g of dry weigh and pHin = 7.41 ± 0.05). The main result from 31p NMR data concerned ATP recovery during cold reperfusion, which was significantly higher in the HBLS group (112 ± 10%) as compared to the UW and HTK groups (around 66%). The presence of glycine decreased ATP recovery (88 ± 8% in HBLSg2, 79 ± 15% in HBLSg10). Higher values of recovered pHin were observed in livers stored in histidine buffered solutions (around 7.30) as compared to UW (around 7.20); histidine was by 13C NMR proved to accumulate in the liver cells, thus ensuring a good buffering capacity. The thermal transition induced a decrease in both ATP level and pHin in all groups. This might be the result of a stimulation of the carbohydrate metabolism (as demonstrated by 13C NMR) especially when glycine was present in the storage solution.  相似文献   

11.
BACKGROUND: Deep accidental hypothermia (core temperature <28 degrees C) is an uncommon medical emergency requiring rapid active core rewarming. Extracorporeal circulation has become the treatment of choice for deep hypothermic patients with cardiac arrest. CASE REPORT: We report on a 30-year-old patient who suffered from deep accidental hypothermia (core temperature 24.8 degrees C) and cardiac arrest by prolonged exposure to a cold urban environment as a consequence of severe ethylalcohol intoxication. The rewarming with the aid of extracorporeal circulation was initiated shortly after his arrival at the hospital. External cardiac massage was maintained until full ECC fl ow was established. The patient was weaned from extracorporeal circulation after 157 min, awaked 4 hours later and consequently extubated within 16 hours after rewarming with no neurological impairment. At 3-week follow-up, the patient was fully re-integrated in his work and personal life. CONCLUSION: This case demonstrates the excellent prognosis of a young victim in the case of deep accidental hypothermia with cardiac arrest, provided that deep hypothermia precedes the cardiac arrest and rewarming by extracorporeal circulation is immediately applied. Simultaneous ethyl alcohol intoxication can be considered a protective factor improving the patient's outcome. Complete recovery was achieved within 24 hours after the accident.  相似文献   

12.
The objective of this study was to determine whether inhibition of intracellular catalase would decrease the tolerance of the heart to ischemia-reperfusion and hydrogen peroxide-induced injuries. Isolated bicarbonate buffer-perfused rat hearts were used in the study. Intracellular catalase was inhibited with 3-amino-1,2,4-triazole (ATZ, 1.5 g/kg body weight, two hours prior to heart perfusion). In the ischemia-reperfusion protocol, hearts were arrested with St. Thomas' II cardioplegic solution, made ischemic for 35 min at 37°C, and reperfused with Krebs-Henseleit buffer for 30 min. The extent of ischemic injury was assessed using postischemic contractile recovery and lactate dehydrogenase (LDH) leakage into reperfusate. In the hydrogen peroxide infusion protocol, hearts were perfused with increasing concentrations of hydrogen peroxide (inflow rates 0.05-1.25 μmol/min). Inhibition of catalase activity (30.4 ± 1.8 mU/mg protein in control vs 2.4 ± 0.3 mU/mg in ATZ-treated hearts) affected neither pre-ischemic aerobic cardiac function nor post-ischemic functional recovery and LDH release in hearts subjected to 35 min cardioplegic ischemic arrest. Myocardial contents of lipid hydroperoxides were similar in control and ATZ-treated animals after 20 min aerobic perfusion, ischemia, and ischemia-reperfusion. During hydrogen peroxide perfusion, there was an increase in coronary flow rate followed by an elevation in diastolic pressure and inhibition of contractile function in comparison with control hearts. The functional parameters between control and ATZ-treated groups remained unchanged. The concentrations of myocardial lipid hydroperoxides were the same in both groups. We conclude that inhibition of myocardial catalase activity with ATZ does not predispose the rat heart to ischemia-reperfusion and hydrogen peroxide-induced injury.  相似文献   

13.

1. 1.|The effect of hypothermia (24°C) on the pressor action of angiotensin II (ANG II) was studied in anaesthetized rats.

2. 2.|Hypothermia prolonged the pressor response to ANG II leading to an increase in the estimated half-life of ANG II.

3. 3.|Hypothermia also caused a significant increase in stroke volume and a significant decrease in heart rate with no change in cardiac output.

4. 4.|It is conclued that hypothermia causes a prolongation of the pressor action of ANG II probably by reducing the activity of the catabolic enzymes leading to an increase in ANG II half-life.

Author Keywords: Cold; cardiac output; stroke volume; heart rate; blood pressure; angiotensin catabolism; rats  相似文献   


14.
Abstract

The ability of mild hypothermia (MH; 34°C) to protect against postischemic endothelial injury and decrease reactive oxygen species' (ROS) formation was studied using lucigenin and luminol enhanced chemiluminescence (CL). Lucigenin CL is largely specific for superoxide, while luminol reacts with many ROS.

Isolated rat livers perfused under constant flow in a non-recirculating system were exposed to 2.5 h of ischemia after 0.5 h perfusion with Krebs-Henseleit buffer at either normothermia (38°C) or mild hypothermia (34°C) (n = 5, all groups). CL (cps), vascular resistance (Woods units), O2 consumption, and potassium efflux were measured at the end of perfusion, and at 0 min reperfusion, and every 30 min during reperfusion.

For both the lucigenin and luminol groups, CL and vascular resistance increased significantly (repeat measures ANOVA, P <0.05) for normothermia (NT, 38°C) but not mild hypothermia. Potassium efflux did not change significantly for the mild hypothermia groups. In the luminol enhanced group, oxygen consumption was greater in the mildly hypothermic group at 1 h and 1.5 h of reperfusion.

Mild hypothermia decreased postischemic ROS production. Increased vascular resistance in the normothermia group may indicate an endothelial injury. Mild hypothermia appears to protect against this injury.  相似文献   

15.
Allopregnanolone is a neurosteroid synthesized from progesterone in brain. It increases inhibition through modulation of the gamma-aminobutyric acid type A (GABA-A) receptor. Both agents are putative neuroprotectants after ischemic stroke. We sought to confirm their effectiveness in a hypertensive rat stroke model, with intra- and post-operative temperature regulation. The primary study compared allopregnanolone, progesterone or vehicle control treatments, administered 105 minutes after induction of temporary middle cerebral artery occlusion in spontaneously hypertensive rats. Temperature was controlled intraoperatively and a heat mat used in the 6 hours postoperatively to permit animal temperature self-regulation. The primary outcome was infarct volume and secondary outcomes were tests of sensory and motor function. There was no significant effect of treatment on any outcome measure. Given prior reports of GABA-A receptor agonists causing hypothermia, follow-up experiments were conducted to examine postoperative temperature regulation. These did not reveal a difference in postoperative temperature in neurosteroid-treated animals compared to control. However, in all rats maintained postoperatively in ambient temperature, moderate hypothermia was observed. This was in contrast to rats maintained over a heat mat. The lowest mean postoperative temperature was between 34.4–34.9°C in all 3 groups. These data do not support a neuroprotective effect of allopregnanolone or progesterone in ischemic stroke in hypertensives in the setting of normothermia. Given previous evidence of synergy between neuroprotective agents and hypothermia, demonstration of neuroprotective effect of these agents in the absence of postoperative hypothermia would be prudent before consideration of these agents for further clinical investigation.  相似文献   

16.
We have compared the influence of two different cold temperatures (below 10°C) for cardiac ischemia by measuring a large variety of hemodynamic and metabolic parameters during ischemia and reflow. Isolated isovolumic rat hearts were arrested with a preservation solution which was developed in our laboratory and then submitted to 5 h of cold storage (4°C, group I; and 7.5°C, group II) in the same solution. After an additional period of 50 min of ischemia at 15°C with intermittent cardioplegic infusion, hearts were reperfused for 60 min at 37°C. Function was assessed during the control period and reflow. High-energy phosphates and intracellular pH were followed by31P magnetic resonance spectroscopy. Analyses of metabolites and enzymes were performed by biochemical assays and HPLC in coronary effluents and in freeze-clamped hearts to assess cellular integrity. The energetic pool was better preserved at 4°C during ischemia (ATP at the end of 4°C ischemia, 59 ± 7% in group I vs 31 ± 5% in group II,P< 0.01) and reflow (P< 0.05) but membrane protection was higher when increasing the temperature to 7.5°C (reduction of creatine kinase leakage, 89 ± 16 IU/min in group I vs 51 ± 5 IU/min in group II,P< 0.05). As a result, functional recovery, represented by the rate pressure product, was higher in hearts preserved at 7.5°C (52 ± 6% recovery in group I vs 77 ± 7% in group II at the end of reflow,P< 0.05). Altogether, cold storage at 7.5°C provides a better protection than storage at 4°C.  相似文献   

17.
尾加压素Ⅱ对正常及缺血-再灌注离体大鼠心脏的影响   总被引:6,自引:1,他引:5  
Zhou P  Wu SY  Yu CF  Wang H  Tang CS  Lin L  Yuan WJ 《生理学报》2003,55(4):442-448
在正常Langendorff灌流与缺血-再灌注(停灌20 min-复灌20 min)离体大鼠心脏模型,观察尾加压素Ⅱ(urotensin Ⅱ,UⅡ)对冠脉流量、心功能和心肌代谢的影响以及心肌UⅡ受体的功能,以探讨UⅡ的心脏效应。对正常心脏给予0.1、1和10 nmol/L UⅡ各5 min,然后换洗5 min,对停灌缺血-再灌注心脏在再灌注期给予1或10nmol/L UⅡ。监测心率、左室内压和左室内压升降的最大变化率等心功能指标,计算冠脉流量,测定冠脉流出液中总蛋白和肌红蛋白含量以及乳酸脱氢酶(LDH)活性。灌流结束后,测定心肌丙二醛(MDA)含量和质膜UⅡ结合位点(放射性配基结合法)。结果如下:(1)正常心脏灌流UⅡ后,冠脉流量和心功能呈浓度依赖下降,换洗后没有完全恢复。心肌蛋白、肌红蛋白和LDH漏出随UⅡ浓度的增加而增加,换洗后迅速减少。UⅡ组心肌MDA含量与对照组差异无显著性。(2)缺血-再灌注后,冠脉流量显著减少,心功能显著抑制,再灌注期心肌蛋白、肌红蛋白和LDH明显漏出;给予UⅡ后,上述变化增强,且高浓度组更强,与对照组差异有显著性(P<<0.01),再灌注后心肌MDA含量亦显著高于对照(P<0.01)。(3)缺血-再灌注心肌质膜UⅡ受体的B_(max)显著高于正常对照心肌(14.65±1.78vs20.53±1.98 fmol/mg pr,P<0.01),Kd值变化无统计学意义。上述结果表明,在正常  相似文献   

18.
The effects of cold air inhalation and isometric exercise on coronary blood flow are currently unknown, despite the fact that both cold air and acute exertion trigger angina in clinical populations. In this study, we used transthoracic Doppler echocardiography to measure coronary blood flow velocity (CBV; left anterior descending coronary artery) and myocardial function during cold air inhalation and handgrip exercise. Ten young healthy subjects underwent the following protocols: 5 min of inhaling cold air (cold air protocol), 5 min of inhaling thermoneutral air (sham protocol), 2 min of isometric handgrip at 30% of maximal voluntary contraction (grip protocol), and 5 min of isometric handgrip at 30% maximal voluntary contraction while breathing cold air (cold + grip protocol). Heart rate, blood pressure, inspired air temperature, CBV, myocardial function (tissue Doppler imaging), O(2) saturation, and pulmonary function were measured. The rate-pressure product (RPP) was used as an index of myocardial O(2) demand, whereas CBV was used as an index of myocardial O(2) supply. Compared with the sham protocol, the cold air protocol caused a significantly higher RPP, but there was a significant reduction in CBV. The cold + grip protocol caused a significantly greater increase in RPP compared with the grip protocol (P = 0.045), but the increase in CBV was significantly less (P = 0.039). However, myocardial function was not impaired during the cold + grip protocol relative to the grip protocol alone. Collectively, these data indicate that there is a supply-demand mismatch in the coronary vascular bed when cold ambient air is breathed during acute exertion but myocardial function is preserved, suggesting an adequate redistribution of blood flow.  相似文献   

19.
Semax, a member of ACTH-derived peptides family, has been employed in the treatment of acute ischemic stroke in patients. It decreased neurological deficit and reduced NO hyperproduction in the rat brain, caused by acute cerebral hypoperfusion. We suggested that semax is also able to protect rat heart from ischemic damage in acute myocardial infaction (AMI). AMI was induced by left coronary artery occlusion, myocardial ischemic area averaged 30 % of left ventricle. In 2 hours after coronary occlusion, the AMI group developed 11 % reduced mean arterial blood pressure and 48 % increased diastolic blood pressure in left ventricle in comparison with sham-operated control group. However, infusion of either dobutamine, which directly stimulates myocardial contractility, or sodium nitroprusside and phenylephrine, that change vascular resistance and thus cardiac afterload, did not reveal distinctions in hemodynamic parameters between groups. These data indicate absense or only moderate cardiac dysfunction in rats with AMI and are consistent wih morphometrical and histochemical studies that did not detect any necrotic or apoptotic (TUNEL-test) changes in left ventricular cardiomyocytes in spite of development of distinct ischemic disturbances of mitochondria and nuclear in about 50 % of cardiomyocytes in 2 hours after AMI. Semax (150 microg/kg), given i. p. 15 min and 2 hours after coronary occlusion, caused no effect on cardiac function, but completely prevented ischemia-induced ultrastructural changes of cardiomyocytes. This protective effect was accompanied by the ability of peptide to blunt the increase in plasma concentrations of nitrates, observed in AMI group.  相似文献   

20.
Isotonic reabsorption by the rat kidney proximal tubule was drastically inhibited after less than 2 min intraluminal perfusion with fresh sera from rat (both homologous and autologous), cat, rabbit and human, but not with sera from mouse and guinea pig. The inhibitory factor in serum in a heat (56° C for 30 min) and storage (4°C for 2–5 days) labile macromolecule (mol. wt 50 000) and requires Ca2+ for its effect. The cellular electrical potential difference of the proximal tubular cells was irreversively destroyed and intraluminally perfused trypan blue dye incorporated into the tubular cells after the intraluminal perfusion with serum for 2 min. These observations suggest that lysis of the proximal tubular cells is the mechanism for serum-induced inhibition of proximal tubular isotonic reabsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号