首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
S C Wu  J Gyrgyey    D Dudits 《Nucleic acids research》1989,17(8):3057-3063
Histone H3 mRNAs were found in polyA(+) fractions of total RNA prepared from alfalfa plants, calli and somatic embryos. The sequence analysis of cDNAs revealed the presence of a polyA tail on independent alfalfa H3 mRNAs. A highly conserved sequence motif AAUGAAA identified about 20bp upstream from the 3' ends of the alfalfa H3 cDNAs was suggested to be one of the possible regulatory elements in the 3' end formation and polyadenylation. Three out of the four analysed H3 cDNAs have more than 97% homology with a genomic clone and encode the same protein. While the fourth represents a minor species with only 78.8% homology to the coding region of the genomic clone and encodes a H3 histone with four amino acid replacements. On the basis of compilation analysis we suggest a consensus sequence for plant H3 histones which differs from that of animal's by four amino acid changes.  相似文献   

3.
A series of tetrahydroisoquinolines acting as dual serotonin transporter inhibitor/histamine H(3) antagonists is described. The introduction of polar aromatic spacers as part of the histamine H(3) pharmacophore was explored. A convergent synthesis of the final products allowing late stage introduction of the aromatic side chain was developed. In vitro and in vivo data are discussed.  相似文献   

4.
Polyadenylation of histone H3 and H4 mRNAs in dicotyledonous plants   总被引:7,自引:0,他引:7  
  相似文献   

5.
The epigenetic marks H3K27me3 and H3K4me3 are important repressive and permissive histone modifications, respectively, which are involved in gene regulation such as Hox gene expression during embryonic development. In this study, we investigated the global levels of these two histone modifications. We also investigated the expression of H3K27me3's methyltransferase (EZH2), EZH2 co‐factors (EED and SUZ12) and demethylases (JMJD3 and UTX), as well as H3K4me3's methylases (ASH1L and MLL1) and demethylase (RBP2) in porcine pre‐implantation embryos. In addition, the expression of Hox genes, HOXA2, HOXA3, HOXA7, HOXA10, HOXB4, HOXB7, HOXC8, HOXD8, and HOXD10 was investigated. We found that global levels of H3K27me3 decreased from the 1‐ to the 4‐cell stage, corresponding to the time of major embryonic genome activation. Subsequently, the levels increased in hatched blastocysts, particularly in the trophectoderm. The expression levels of EZH2, EED, SUZ12, JMJD3, and UTX correlated well with these findings. The global levels of H3K4me3 decreased from the 1‐cell to the morula stage and increased in hatched blastocysts, especially in trophectoderm. A peak in expression of ASH1L was seen at the 4‐cell stage, but overall, expression of ASH1L, MLL1, and RBP2 correlated poorly with H3K4me3. HOXA3, A7, and B4 were expressed in 4‐cell embryos, and HOXA7, A10, B4, and D8 were expressed in hatched blastocysts, and did not correlate well to global methylation of H3K27me3 or H3K4me3. Thus, H3K4me3 may play a role in early porcine embryonic genome activation, whereas, H3K27me3 may be involved in initial cell lineage segregation in the blastocyst. Mol. Reprod. Dev. 77: 540–549, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Histone H3 encoding genes, particularly H3F3A and H3F3B, the genes encoding the variant histone H3.3, are mutated at high frequency in pediatric brain and bone malignancies. Compared to the extensive studies on K27M and K36M mutations, little is known about the mechanism of G34 mutations found in pediatric glioblastoma or giant cell tumors of the bone. Here we report that unlike the K27M or K36M that affect global histone methylation, the giant cell tumors of the bone G34 mutations (G34L/W) only affect histone H3K36 and H3K27 methylation on the same mutated histone tails (in cis), a mechanism distinct from known histone mutations.  相似文献   

7.
8.
Human cytidine deaminase APOBEC3H restricts HIV-1 replication   总被引:2,自引:0,他引:2  
The human genome encodes seven APOBEC3 (A3) cytidine deaminases with potential antiretroviral activity: A3A, A3B, A3C, A3DE, A3F, A3G, and A3H. A3G was the first identified to block replication of human immunodeficiency virus type 1 (HIV-1) and many other retroviruses. A3F, A3B, and A3DE were shown later to have similar activities. HIV-1 produces a protein called Vif that is able to neutralize the antiretroviral activities of A3DE, A3F, and A3G, but not A3B. Only the antiretroviral activity of A3H remains to be defined due to its poor expression in cell culture. Here, we studied the mechanism impairing A3H expression. When primate A3H sequences were compared, a premature termination codon was identified on the fifth exon of the human and chimpanzee A3H genes, which significantly decreased their protein expression. It causes a 29-residue deletion from the C terminus, and this truncation did not reduce human A3H protein stability. However, the mRNA levels of the truncated gene were significantly decreased. Human A3H protein expression could be restored to a normal level either by repairing this truncation or through expression from a vector containing an intron from human cytomegalovirus. Once expression was optimized, human A3H could reduce HIV-1 infectivity up to 150-fold. Importantly, HIV-1 Vif failed to neutralize A3H activity. Nevertheless, extensive sequence analysis could not detect any significant levels of G-to-A mutation in the HIV-1 genome by human A3H. Thus, A3H inhibits HIV-1 replication potently by a cytidine deamination-independent mechanism, and optimizing A3H expression in vivo should represent a novel therapeutic strategy for HIV-1 treatment.  相似文献   

9.
Histone H3 lysine 27 (H3K27) methylation and H2A monoubiquitination (ubH2A) are two closely related histone modifications that regulate Polycomb silencing. Previous studies reported that H3K27 trimethylation (H3K27me3) rarely coexists with H3K36 di- or tri-methylation (H3K36me2/3) on the same histone H3 tails, which is partially controlled by the direct inhibition of the enzymatic activity of H3K27-specific methyltransferase PRC2. By contrast, H3K27 methylation does not affect the catalytic activity of H3K36-specific methyltransferases, suggesting other Polycomb mechanism(s) may negatively regulate the H3K36-specific methyltransferase(s). In this study, we established a simple protocol to purify milligram quantities of ubH2A from mammalian cells, which were used to reconstitute nucleosome substrates with fully ubiquitinated H2A. A number of histone methyltransferases were then tested on these nucleosome substrates. Notably, all of the H3K36-specific methyltransferases, including ASH1L, HYPB, NSD1, and NSD2 were inhibited by ubH2A, whereas the other histone methyltransferases, including PRC2, G9a, and Pr-Set7 were not affected by ubH2A. Together with previous reports, these findings collectively explain the mutual repulsion of H3K36me2/3 and Polycomb modifications.  相似文献   

10.
A novel series of imidazole containing histamine H3 receptor ligands were investigated and found to be potent functional antagonists. After improving the stability of these molecules towards liver microsomes, these compounds were found to have no appreciable affinity for CYP P450s. Subsequent in vivo experiments showed significant brain uptake of (4-chloro-phenyl)-[2-(1-isopropyl-piperidin-4-ylmethoxy)-3-methyl-3H-imidazol-4-yl]-methanone 22.  相似文献   

11.
Phylogenetic analysis of the core histones H2A, H2B, H3, and H4.   总被引:20,自引:1,他引:19       下载免费PDF全文
Despite the ubiquity of histones in eukaryotes and their important role in determining the structure and function of chromatin, no detailed studies of the evolution of the histones have been reported. We have constructed phylogenetic trees for the core histones H2A, H2B, H3, and H4. Histones which form dimers (H2A/H2B and H3/H4) have very similar trees and appear to have co-evolved, with the exception of the divergent sea urchin testis H2Bs, for which no corresponding divergent H2As have been identified. The trees for H2A and H2B also support the theory that animals and fungi have a common ancestor. H3 and H4 are 10-fold less divergent than H2A and H2B. Three evolutionary histories are observed for histone variants. H2A.F/Z-type variants arose once early in evolution, while H2A.X variants arose separately, during the evolution of multicellular animals. H3.3-type variants have arisen in multiple independent events.  相似文献   

12.
A series of non-imidazole histamine H(3) receptor antagonists based on the (3-phenoxypropyl)amine motif, which is a common pharmacophore for H(3) antagonists, has been identified. A preliminary SAR study around the amine moiety has identified 8a as a potent H(3) antagonist possessing a good pharmacokinetic profile in the rat.  相似文献   

13.
The histone H3 and H4 mRNAs are polyadenylated in maize   总被引:8,自引:3,他引:5       下载免费PDF全文
Northern blot analysis revealed that the histone H3 and H4 mRNAs are of unusual large size in germinating maize embryos. S1-mapping experiments show that the 3'-untranslated regions of the mRNAs transcribed from 3 H3 and 2 H4 maize genes previously described are much longer than in the non-polyadenylated histone mRNAs which represent a major class in animals. Moreover, oligo d(T) cellulose fractionation of RNAs isolated at different developmental stages indicates that more than 99% of the maize H3 and H4 mRNAs are polyadenylated. A putative polyadenylation signal is present in all five genes 17 to 27 nucleotides before the 3'-ends of the mRNAs.  相似文献   

14.
The role of the histone pairs H2A,H2B and H3,H4 in the kinetics of core particle formation was investigated by using N-(1-pyrene)maleimide-labeled histone H3. The excimer emission intensity of a DNA-core histone complex prepared by direct mixing of DNA and histones in 0.2 m-NaCl is reduced by half when H2A,H2B is omitted. Fluorescence quenching studies and lifetime measurements indicate that the emission differences are probably due to static quenching. In a correctly folded nucleosome or a DNA-(H3,H4) complex, the two pyrene rings are buried and are held very close. DNA-(H3,H4) can interact with additional copies of H3,H4, but only when two dimers of H2A,H2B are correctly bound is there a specific twofold increase in excimer emission.The kinetics of the reaction of H3,H4 with DNA in 0.2 m-NaCl were followed by measuring the increase in 460 nm fluorescence. The apparent rate constant of the dominant kinetic component is ~ 2 × 10?1 s?1. If histones H2A,H2B are added immediately after the preparation of the DNA-(H3,H4) complex, an increase in excimer fluorescence is observed, with an apparent rate constant of ~ 6 × 10?3 s?1. However, if histones H2A,H2B are added one hour after DNA-(H3,H4) complex formation, there is no increase in excimer fluorescence. These results suggest that an intermediate involving the H3,H4 tetramer is formed first in nucleosome assembly. In the presence of H2A,H2B, this intermediate evolves to the final folded nucleosome, but in the absence of H2A,H2B it rearranges to an unmaturable dead-end complex. Additional experiments show that a very fast transfer of histone pairs (probably H2A,H2B) can take place between partially reconstituted nucleosomes.  相似文献   

15.
The human APOBEC3 family consists of seven cytidine deaminases (A3A to A3H), some of which display potent antiretroviral activity against HIV-1 and other retroviruses. Studies that analyzed the effect of A3G on human T-lymphotropic virus type 1 (HTLV-1) infectivity resulted in conflicting findings, and our knowledge of HTLV-1 restriction by other A3 proteins remains limited. Since HTLV-1, much like HIV, targets CD4(+) T cells, we hypothesized that A3 proteins other than A3G restrict HTLV-1. All seven human A3 proteins were tested in HTLV-1 reporter and HIV-1 infectivity assays. We show that A3A, A3B, and A3H haplotype 2 (A3H hapII) acted as potent inhibitors of HTLV-1. Wild-type HIV-1, in contrast, was restricted by A3B and A3H hapII, but not by A3A. Catalytic site mutants of A3A, A3B, and A3H hapII showed that A3A and A3B restriction of HTLV-1 required deaminase activity. However, A3H hapII acted in a deaminase-independent manner when restricting HTLV-1, while requiring deaminase activity for HIV-1 restriction. We also analyzed A3 editing of HTLV-1 in five T-cell lines obtained from HTLV-1-infected patients. These cell lines contained extensively edited HTLV-1 sequences with G-to-A mutations in dinucleotide contexts suggestive of APOBEC3 mutagenesis. Comparison of the A3-induced mutations from reporter cells and the patient-derived cell lines indicate that A3G but also other A3 members, possibly A3A and A3B, affect HTLV-1 in vivo. Taken together, our data indicate that HTLV-1 is a likely target for multiple A3 proteins.  相似文献   

16.
《Epigenetics》2013,8(8):767-775
Chromatin is broadly compartmentalized in two defined states: euchromatin and heterochromatin. Generally, euchromatin is trimethylated on histone H3 lysine 4 (H3K4me3) while heterochromatin contains the H3K9me3 marks. The H3K9me3 modification is added by lysine methyltransferases (KMTs) such as SETDB1. Herein, we show that SETDB1 interacts with its substrate H3, but only in the absence of the euchromatic mark H3K4me3. In addition, we show that SETDB1 fails to methylate substrates containing the H3K4me3 mark. Likewise, the functionally related H3K9 KMTs G9A, GLP, and SUV39H1 also fail to bind and to methylate H3K4me3 substrates. Accordingly, we provide in vivo evidence that H3K9me2-enriched histones are devoid of H3K4me2/3 and that histones depleted of H3K4me2/3 have elevated H3K9me2/3. The correlation between the loss of interaction of these KMTs with H3K4me3 and concomitant methylation impairment leads to the postulate that, at least these four KMTs, require stable interaction with their respective substrates for optimal activity. Thus, novel substrates could be discovered via the identification of KMT interacting proteins. Indeed, we find that SETDB1 binds to and methylates a novel substrate, the inhibitor of growth protein ING2, while SUV39H1 binds to and methylates the heterochromatin protein HP1α. Thus, our observations suggest a mechanism of post-translational regulation of lysine methylation and propose a potential mechanism for the segregation of the biologically opposing marks, H3K4me3 and H3K9me3. Furthermore, the correlation between H3-KMTs interaction and substrate methylation highlights that the identification of novel KMT substrates may be facilitated by the identification of interaction partners.  相似文献   

17.
Histamine H(3) receptor is a G protein-coupled receptor whose activation inhibits the synthesis and release of histamine and other neurotransmitters from nerve endings and is involved in the modulation of different central nervous system functions. H(3) antagonists have been proposed for their potential usefulness in diseases characterized by impaired neurotransmission and they have demonstrated beneficial effects on learning and food intake in animal models. In the present work, a 3D model of the rat histamine H(3) receptor, built by comparative modeling from the crystallographic coordinates of bovine rhodopsin, is presented with the discussion of its ability to predict the potency of known and new H(3) antagonists. A putative binding site for classical, imidazole-derived H(3) antagonists was identified by molecular docking. Comparison with a known pharmacophore model and the binding affinity of a new rigid H(3) antagonist (compound 1, pK(i)=8.02) allowed the characterization of a binding scheme which could also account for the different affinities observed in a recently reported series of potent H(3) antagonists, characterized by a 2-aminobenzimidazole moiety. Molecular dynamics simulations were employed to assess the stability and reliability of the proposed binding mode. Two new conformationally constrained benzimidazole derivatives were prepared and their binding affinity was tested on rat brain membranes; compound 9, designed to reproduce the conformation of a known potent H(3) antagonist, showed higher potency than compound 8, as expected from the binding scheme hypothesized.  相似文献   

18.
R T?njes  D Doenecke 《Gene》1985,39(2-3):275-279
A duck recombinant DNA phage library was screened for H3 histone genes, and the sequence of a variant H3 gene, which appears not to be part of a histone gene cluster, has been determined. As derived from the nucleotide sequence, this gene codes for a 135-amino acid (aa) protein (as any other H3) and shows 10 aa substitutions compared with most published H3 structures. Six of these aa changes are based on one nucleotide (nt) substitutions in arginine codons. This results in three new histidines and, in addition to the highly conserved cysteine at position 110, three more cysteines are found in this H3 histone subtype.  相似文献   

19.
Chaperoning the histone H3 family   总被引:1,自引:0,他引:1  
  相似文献   

20.
High levels of acetylation of lysines in the amino-terminal domains of all four core histones, H2A, H2B, H3, and H4, have been shown to reduce the linking number change per nucleosome core particle in reconstituted minichromosomes (Norton, V. G., Imai, B. S., Yau, P., and Bradbury, E. M. (1989) Cell 57, 449-457). Because there is evidence to suggest that the acetylations of H3 and H4 have functions that are distinct from those of H2A and H2B, we have determined the nucleosome core particle linking number change in minichromosomes containing fully acetylated H3 and H4 and very low levels of acetylation in H2A and H2B. This linking number change was -0.81 +/- 0.05, in close agreement with the linking number change for hyperacetylated nucleosome core particles which contain high levels of acetylation in all four core histones (approximately 70% of full acetylation in H3 and H4). Therefore, high levels of acetylation of H3 and H4 alone are responsible for the reduction in the linking number change per nucleosome core particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号