首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J A Walmsley  J F Burnett 《Biochemistry》1999,38(42):14063-14068
The (31)P NMR spectra of (TMA)(2)(5'-GMP), where TMA is [(CH(3))(4)N](+) and 5'-GMP is guanosine 5'-monophosphate, and K(2)(5'-GMP), containing various amounts of KCl or TMACl, have been obtained at 2 degrees C. Variable-temperature spectra have also been obtained for K(2)(5'-GMP). The TMA(+) ion serves to neutralize the charge on the dianionic 5'-GMP and permits the added K(+) to bond preferentially in structure-forming sites. (1)H NMR spectra (one- and two-dimensional) have been obtained for K(2)(5'-GMP) and used to assign the proton resonances in the self-associated structures and determine that all residues have the anti glycosidic conformation. The (31)P and (1)H NMR spectra are very complex and indicate the presence of a large number of molecular environments and a structural variation dependent upon the mole ratio of 5'-GMP to K(+). A new model for the solution structure is proposed in which the 5'-GMP forms a pseudo-four-stranded helix with guanine-guanine hydrogen bonding forming a continuous helical strand, rather than the usual planar G-tetrad structure. The guanine-guanine hydrogen bonding sites are the same as that found in a G-tetrad. The K(+) ions would be located in the center of the helix and bonding to the carbonyl oxygens. They are interacting with the phosphates as well. Integration data from the largest sized species give an estimate of 14.3 +/- 1.1 residues in a helical structure.  相似文献   

2.
The stability of the 1:1 complex of sodium ion with the dianion of guanosine 5'-monophosphate has been determined by means of a potentiometric titration employing a specific ion electrode. The stability constant for the reaction Na(+) + 5'-GMP(2-) Na(5'-GMP)(-) was found to be 2.85 +/- 0.36 M(-1) at 5 degrees C and an ionic strength of 1.1 +/- 0.1 M. Although 5'-GMP forms ordered self-structures at high concentration in the presence of sodium ions, in dilute solution and at low sodium ion concentrations the Na(+) binding is weak and typical of that for other nucleotides.  相似文献   

3.
Using pulse radiolysis and laser flash photolysis, we have investigated the reactions of the deleterious species, e(-)(aq), HO&z.rad;, O(2)(*)(-) and O(2)((1)Delta(g)) with 10 water-soluble cyclopropyl-fused C(60) derivatives including a mono-adduct dendro[60]fullerene (d) and C(60) derivatives based on C(60)[C(COOH)(2)](n=2-6), some of which are known to be neuroprotective in vivo. The rate constants for reactions of e(-)(aq) and HO&z.rad; lie in the range 0.5-3.3 x 10(10) M(-1) s(-1). The d and bis-adduct monoanion radicals display sharp absorption peaks around 1000 nm (epsilon = 7 000-11 500 M(-1) cm(-1)); the anions of the tris-, tetra-, and penta-adduct derivatives have broader, weaker absorptions. The monohydroxylated radicals have their most intense absorption maxima around 390-440 nm (epsilon = 1000-3000 M(-1) cm(-1)). The anion and hydroxylated radical absorption spectra display a blue-shift as the number of addends increases. The radical anions react with oxygen (k approximately 10(7)-10(9) M(-1) s(-1)). The reaction of O(2)(*)(-) with the C(60) derivatives does not occur via an electron transfer. The rate constants for singlet oxygen reaction with the dendrofullerene and eee-derivative in D(2)O at pH 7.4 are k approximately 7 x 10(7) and approximately 2 x 10(7) M(-1) s(-1) respectively, in contrast to approximately 1.2 x 10(5) M(-1) s(-1) for the reaction with C(60) in C(6)D(6). The large acceleration of the rates for electron reduction and singlet oxygen reactions in water is due to a solvophobic process.  相似文献   

4.
Temperature-jump relaxation kinetic studies were undertaken at 25 degrees C with ribonuclease T1 (RNase T1) alone and in the presence of guanosine (Guo) and 3'-guanylic acid (3'-GMP). No relaxations were observed in the absence of ligands and only one process was observed in their presence which reflected a simple on-off reaction in both cases. Apparent association rate constants, k(on), and dissociation rate constants, k(off), were evaluated at several pH values and their ratios, k(on)/k(off), were contrasted with independently determined values of the equilibrium association constant, Ka(eq). The value of k(on)/k(off) for Guo was significantly greater than Ka(eq), whereas Ka(eq) was significantly greater than k(on)/k(off) for 3'-GMP. The simplest interpretation of the result for Guo is that free RNase T1 undergoes a relatively slow undetected isomerization and Guo can bind only with one isomer. 3'-GMP can be considered to bind with the same preference, but in this case the initial enzyme complex undergoes a relatively slow undetected isomerization. These results are consistent with a recent NMR study which suggested that RNase T1 binding with Guo and 3'-GMP are coupled to slow exchange processes in a ligand dependent manner (Shimada, I. and Inagaki, F. (1990) Biochemistry 29, 757-764). It is tentatively concluded that binding of Guo and 3'-GMP at the active site of RNase T1 is limited to a sub-population of conformers involving the base-recognition site and that the phosphomonoester group of the nucleotide can engage in additional conformationally linked interactions at the adjacent catalytic site.  相似文献   

5.
The pH- and time-dependent reaction of the anticancer drug carboplatin, [Pt(cbdca-kappa(2)O,O')(NH(3))(2)] (cbdca=cyclobutane-1,1-dicarboxylate), with the tripeptides H-glyglymet-OH (glycylglycyl-L-methionine) and Ac-glyglymet-OH at 313 K was investigated by high-performance liquid chromatography, NMR and mass spectrometry. The relative stability of the initial ring-opened kappaS complex [Pt(cbdca-kappaO)(Ac-glyglymet-OH-kappaS)(NH(3))(2)] leads to increased formation of the kinetically favoured kappaS:kappaS' bis-adduct [Pt(Ac-glyglymet-OH-kappaS)(2)(NH(3))(2)](2+) in comparison with cisplatin. As a result a second 1:2 reaction pathway kappaS-->kappaS:kappaS'-->kappa(2)N(M), S:kappaS'-->kappa(3)N(G2),N(M), S:kappaS', where N(M) and N(G2) represent, respectively, metallated methionine and glycine nitrogen atoms, competes with the 1:1 route kappaS-->kappa(2)N(M), S-->kappa(3)N(G2),N(M), S also observed for cisplatin. Cleavage of N-acetylglycine at the backbone C(O)-N bond to the second gly residue (G2) is observed after 100 h for the respective tridentate complexes [Pt(Ac-glyglyH(-1)metH(-1)-OH-kappa(3)N(G2),N(M), S) (Ac-glyglymet-OH-kappaS)] and [Pt(Ac-glyglyH(-1)metH(-1)-OH-kappa(3)N(G2),N(M), S)(NH(3))] at pH <5.2. The longevity of the initial kappaS complex leads to about an eight-fold increase in the rate of formation of the kappaN7:kappaN7' bis-adduct [Pt(5'-GMP-kappaN7)(2)(NH(3))(2)](2-) for the reaction of carboplatin with 5'-GMP(2-) at pH 7 in the presence of Ac-glyglymet-OH. A mixed-ligand kappaS:kappaN7 species [Pt(5'-GMP-kappaN7)(Ac-glyglymet-OH-kappaS)(NH(3))(2)] provides the major precursor for this 1:2 nucleotide complex and kappaN7 coordination of 5'-GMP(2-) is also observed in the kappa(2)N(M),S:kappaN7 complex [Pt(5'-GMP-kappaN7)(Ac-glyglymetH(-1)-OH-kappa(2)N(M),S)(NH(3))(2)](-) formed by substitution of the ammine ligand trans to the methionine sulphur. As the intermediate kappaS:kappaN7 species is formed rapidly within the first 10 h of reaction, these results suggest that the transfer reaction pathway kappaS-->kappaS:kappaN7-->kappaN7:kappaN7' involving kappaS platinated peptides could play an important role in accelerating the rate of DNA binding for carboplatin.  相似文献   

6.
The tetrabutylammonium salt of guanosine 5'-monophosphate (5'-GMP) dissolves in DMSO-d6 forming aggregated species which exhibit some properties of reverse micelles. 1H NOESY experiments show that the 5'-GMP adopts the syn conformation about the glycosidic bond. Molecular mechanics calculations reveal a stable structure with this conformation in which the phosphate group and the amino group of the base are in close enough proximity to hydrogen bond. In contrast inosine 5'-monophosphate in DMSO-d6, which has no NH2 group for hydrogen bond stabilization of the syn conformation, is shown by NMR to have the anti structure. Guanosine in DMSO-d6 behaves differently from 5'-GMP. Guanosine adopts the anti conformation and forms a symmetric dimer via hydrogen bonding between the N3 and NH2 of the bases.  相似文献   

7.
The [Ru(II)(Hedta)NO(+)] complex is a diamagnetic species crystallizing in a distorted octahedral geometry, with the Ru-N(O) length 1.756(4) A and the RuNO angle 172.3(4) degrees . The complex contains one protonated carboxylate (pK(a)=2.7+/-0.1). The [Ru(II)(Hedta)NO(+)] complex undergoes a nitrosyl-centered one-electron reduction (chemical or electrochemical), with E(NO+/NO)=-0.31 V vs SCE (I=0.2 M, pH 1), yielding [Ru(II)(Hedta)NO](-), which aquates slowly: k(-NO)=2.1+/-0.4x10(-3) s(-1) (pH 1.0, I=0.2 M, CF(3)COOH/NaCF(3)COO, 25 degrees C). At pHs>12, the predominant species, [Ru(II)(edta)NO](-), reacts according to [Ru(II)(edta)NO](-)+2OH(-)-->[Ru(II)(edta)NO(2)](3-), with K(eq)=1.0+/-0.4 x 10(3) M(-2) (I=1.0 M, NaCl; T=25.0+/-0.1 degrees C). The rate-law is first order in each of the reactants for most reaction conditions, with k(OH(-))=4.35+/-0.02 M(-1)s(-1) (25.0 degrees C), assignable mechanistically to the elementary step comprising the attack of one OH(-) on [Ru(II)(edta)NO](-), with subsequent fast deprotonation of the [Ru(II)(edta)NO(2)H](2-) intermediate. The activation parameters were DeltaH(#)=60+/-1 kJ/mol, DeltaS(#)=-31+/-3 J/Kmol, consistent with a nucleophilic addition process between likely charged ions. In the toxicity up-and-down tests performed with Swiss mice, no death was observed in all the doses administered (3-9.08 x 10(-5) mol/kg). The biodistribution tests performed with Wistar male rats showed metal in the liver, kidney, urine and plasma. Eight hours after the injection no metal was detected in the samples. The vasodilator effect of [Ru(II)(edta)NO](-) was studied in aortic rings without endothelium, and was compared with sodium nitroprusside (SNP). The times of maximal effects of [Ru(II)(edta)NO](-) and SNP were 2 h and 12 min, respectively, suggesting that [Ru(II)(edta)NO](-) releases NO slowly to the medium in comparison with SNP.  相似文献   

8.
The new homodinuclear complexes, [Cu(2)(II)(HLdtb)(mu-OCH(3))](ClO(4))(2) (1) and [Cu(2)(II)(Ldtb)(mu-OCH(3))](BPh(4)) (2), with the unsymmetrical N(5)O(2) donor ligand (H(2)Ldtb) - {2-[N,N-Bis(2-pyridylmethyl)aminomethyl]-6-[N',N'-(3,5-di-tert-butylbenzyl-2-hydroxy)(2-pyridylmethyl)]aminomethyl}-4-methylphenol have been synthesized and characterized in the solid state by X-ray crystallography.In both cases the structure reveals that the complexes have a common {Cu(II)(mu-phenoxo)(mu-OCH(3))Cu(II)} structural unit.Magnetic susceptibility studies of 1 and 2 reveal J values of -38.3 cm(-1) and -2.02 cm(-1), respectively, and that the degree of antiferromagnetic coupling is strongly dependent on the coordination geometries of the copper centers within the dinuclear {Cu(II)(mu-OCH(3))(mu-phenolate)Cu(II)} structural unit.Solution studies in dichloromethane, using UV-Visible spectroscopy and electrochemistry, indicate that under these experimental conditions the first coordination spheres of the Cu(II) centers are maintained as observed in the solid state structures, and that both forms can be brought into equilibrium ([Cu(2)(HLdtb)(mu-OCH(3))](2+)=[Cu(2)(Ldtb)(mu-OCH(3))](+)+H(+)) by adjusting the pH with Et(3)N (Ldtb(2-) is the deprotonated form of the ligand).On the other hand, potentiometric titration studies of 1 in an ethanol/water mixture (70:30 V/V; I=0.1M KCl) show three titrable protons, indicating the dissociation of the bridging CH(3)O(-) group.The catecholase activity of 1 and 2 in methanol/water buffer (30:1 V/V) demonstrates that the deprotonated form is the active species in the oxidation of 3,5-di-tert-butylcatechol and that the reaction follows Michaelis-Menten behavior with k(cat)=5.33 x 10(-3)s(-1) and K(M)=3.96 x 10(-3)M. Interestingly, 2 can be electrochemically oxidized with E(1/2)=0.27 V vs.Fc(+)/Fc (Fc(+)/Fc is the redox pair ferrocinium/ferrocene), a redox potential which is believed to be related to the formation of a phenoxyl radical.Since these complexes are redox active species, we analyzed their activity toward the nucleic acid DNA, a macromolecule prone to oxidative damage.Interestingly these complexes promoted DNA cleavage following an oxygen dependent pathway.  相似文献   

9.
Inhibition of dipeptidyl peptidase IV (DPP-IV) has been proposed recently as a therapeutic approach to the treatment of type 2 diabetes. N-Substituted-glycyl-2-cyanopyrrolidide compounds, typified by NVP-DPP728 (1-[[[2-[(5-cyanopyridin-2-yl)amino]ethyl]amino]acetyl]-2-cyano-(S )-p yrrolidine), inhibit degradation of glucagon-like peptide-1 (GLP-1) and thereby potentiate insulin release in response to glucose-containing meals. In the present study NVP-DPP728 was found to inhibit human DPP-IV amidolytic activity with a K(i) of 11 nM, a k(on) value of 1.3 x 10(5) M(-)(1) s(-)(1), and a k(off) of 1.3 x 10(-)(3) s(-)(1). Purified bovine kidney DPP-IV bound 1 mol/mol [(14)C]-NVP-DPP728 with high affinity (12 nM K(d)). The dissociation constant, k(off), was 1.0 x 10(-)(3) and 1.6 x 10(-)(3) s(-)(1) in the presence of 0 and 200 microM H-Gly-Pro-AMC, respectively (dissociation t(1/2) approximately 10 min). Through kinetic evaluation of DPP-IV inhibition by the D-antipode, des-cyano, and amide analogues of NVP-DPP728, it was determined that the nitrile functionality at the 2-pyrrolidine position is required, in the L-configuration, for maximal activity (K(i) of 11 nM vs K(i) values of 5.6 to >300 microM for the other analogues tested). Surprisingly, it was found that the D-antipode, despite being approximately 500-fold less potent than NVP-DPP728, displayed identical dissociation kinetics (k(off) of 1.5 x 10(-)(3) s(-)(1)). NVP-DPP728 inhibited DPP-IV in a manner consistent with a two-step inhibition mechanism. Taken together, these data suggest that NVP-DPP728 inhibits DPP-IV through formation of a novel, reversible, nitrile-dependent complex with transition state characteristics.  相似文献   

10.
Guanosine-inosine-preferring nucleoside N-ribohydrolase has been purified to homogeneity from yellow lupin (Lupinus luteus) seeds by ammonium sulfate fractionation, ion-exchange chromatography and gel filtration. The enzyme functions as a monomeric, 80kDa polypeptide, most effectively between pH 4.7 and 5.5. Of various mono- and divalent cations tested, Ca(2+) appeared to stimulate enzyme activity. The nucleosidase was activated 6-fold by 2mM exogenous CaCl(2) or Ca(NO(3))(2), with K(a)=0.5mM (estimated for CaCl(2)). The K(m) values estimated for guanosine and inosine were 2.7+/-0.3 microM. Guanosine was hydrolyzed 12% faster than inosine while adenosine and xanthosine were poor substrates. 2'-Deoxyguanosine, 2'-deoxyinosine, 2'-methylguanosine, pyrimidine nucleosides and 5'-GMP were not hydrolyzed. However, the enzyme efficiently liberated the corresponding bases from synthetic nucleosides, such as 1-methylguanosine, 7-methylguanosine, 1-N(2)-ethenoguanosine and 1-N(2)-isopropenoguanosine, but hydrolyzed poorly the ribosides of 6-methylaminopurine and 2,6-diaminopurine. MnCl(2) or ZnCl(2) inhibited the hydrolysis of guanosine with I(50) approximately 60 microM. Whereas 2'-deoxyguanosine, 2'-methylguanosine, adenosine, as well as guanine were competitive inhibitors of this reaction (K(i) values were 1.5, 3.6, 21 and 9.7 microM, respectively), hypoxanthine was a weaker inhibitor (K(i)=64 microM). Adenine, ribose, 2-deoxyribose, 5'-GMP and pyrimidine nucleosides did not inhibit the enzyme. The guanosine-inosine hydrolase activity occurred in all parts of lupin seedlings and in cotyledons it increased up to 5-fold during seed germination, reaching maximum in the third/fourth day. The lupin nucleosidase has been compared with other nucleosidases.  相似文献   

11.
Lasey RC  Liu L  Zang L  Ogawa MY 《Biochemistry》2003,42(13):3904-3910
Photoinduced electron-transfer (ET) occurs between a negatively charged metallopeptide, [Ru(bpy)(2)(phen-am)-Cys-(Glu)(5)-Gly](3-) = RuCE(5)G, and ferricytochrome c = Cyt c. In the presence of Cyt c, the triplet state lifetime of the ruthenium metallopeptide is shortened, and the emission decays via biexponential kinetics, which indicates the existence of two excited-state populations of ruthenium peptides. The faster decay component displays concentration-independent kinetics demonstrating the presence of a preformed peptide-protein complex that undergoes intra-complex electron-transfer. Values of K(b) = (3.5 +/- 0.2) x 10(4) M(-1) and k(obs)(ET)= (2.7 +/- 0.4) x 10(6) s(-1) were observed at ambient temperatures. The magnitude of k(obs)(ET) decreases with increasing solvent viscosity, and the behavior can be fit to the expression k(obs)(ET) proportional to eta(-alpha) to give alpha = 0.59 +/- 0.05. The electron-transfer process occurring in the preformed complex is therefore gated by a rate-limiting configurational change of the complex. The slower decay component displays concentration-dependent kinetics that saturate at high concentrations of Cyt c. Analysis according to rapid equilibrium formation of an encounter complex that undergoes unimolecular electron-transfer yields K(b)' = (2.5 +/- 0.7) x 10(4) M(-1) and k(obs')(ET)= (7 +/- 3) x 10(5) s(-1). The different values of k(obs)(ET) and k(obs')(ET) suggest that the peptide lies farther from the heme when in the encounter complex. The value of k(obs')(ET) is viscosity dependent indicating that the reaction occurring within the encounter complex is also configurationally gated. A value of alpha = 0.98 +/- 0.14 is observed for k(obs')(ET), which suggests that the rate-limiting gating processes in the encounter complex is different from that in the preformed complex.  相似文献   

12.
A binding protein specific for cyclic guanosine 3':5'-monophosphate (cyclic GMP) has been partially purified from extracts of the eubacterium Caulobacter crescentus and resolved from cyclic adenosine 3':5'-monophosphate (cyclic AMP)-binding activity. Binding of cyclic GMP is not affected by the addition of cyclic AMP or 5'-GMP, but is inhibited about 50 percent by a 50-fold molar excess of dibutyryl cyclic GMP or cyclic hypoxanthine 3':5'-monophosphate. The apparent dissociation constant for the cyclic GMP-binding protein complex is 1.1 X 10(-6) M.  相似文献   

13.
Oxidation of l-serine and l-threonine by a silver(III) complex anion, [Ag(HIO(6))(2)](5-), has been studied in aqueous alkaline medium. The oxidation products of the amino acids have been identified as ammonia, glyoxylic acid and aldehyde (formaldehyde for serine and acetaldehyde for threonine). Kinetics of the oxidation reactions has been followed by the conventional spectrophotometry in the temperature range of 20.0-35.0 degrees C and the reactions display an overall second-order behavior: first-order with respect to both Ag(III) and the amino acids. Analysis of influences of [OH(-)] and [periodate] on the second-order rate constants k' reveals an empirical rate expression: k(')=(k(a)+k(b)[OH(-)])K(1)/([H(2)IO(6)(3-)](e)+K(1)), where [H(2)IO(6)(3-)](e) is equilibrium concentration of periodate, and where k(a)=6.1+/-0.5M(-1)s(-1), k(b)=264+/-6M(-2)s(-1), and K(1)=(6.5+/-1.3)x10(-4)M for serine and k(a)=12.6+/-1.7M(-1)s(-1), k(b)=(5.5+/-0.2)x10(2)M(-2)s(-1), and K(1)=(6.2+/-1.5)x10(-4)M for threonine at 25.0 degrees C and ionic strength of 0.30M. Activation parameters associated with k(a) and k(b) have also been derived. A reaction mechanism is proposed to involve two pre-equilibria, leading to formation of an Ag(III)-periodato-amino acid ternary complex. The ternary complex undergoes a two-electron transfer from the coordinated amino acid to the metal center via two parallel pathways: one pathway is spontaneous and the other is assisted by a hydroxide ion. Potential applications of the Ag(III) complex as a reagent for modifications of peptides and proteins are implicated.  相似文献   

14.
A kinetic study of CO(2) hydration was carried out using the water-soluble zinc model complex with water-soluble nitrilotris(2-benzimidazolylmethyl-6-sulfonate) L1S, [L1SZn(OH(2))](-), mimicking the active site of carbonic anhydrase, in the presence and absence of anion inhibitors NCS(-) and Cl(-). The obtained rate constants k(cat) for CO(2) hydration were 5.9x10(2), 1. 7x10(3), and 3.1x10(3) M(-1) s(-1) at 5, 10, and 15 degrees C, respectively: the k(cat)=ca. 10(4) M(-1) s(-1) extrapolated towards 25 degrees C has been the largest among the reported k(cat) using zinc model complexes for carbonic anhydrase. It was also revealed that NCS(-), Cl(-) and acetazolamide play a role of inhibitors by the decrease of k(cat): 7x10(2) and 2x10(3) M(-1) s(-1) for NCS(-) and Cl(-) at 15 degrees C, respectively. The sequence of their magnitudes in k(cat) is Cl(-) approximately acetazolamide>NCS(-), where the sequence Cl(-)>NCS(-) is confirmed for native carbonic anhydrase. The difference of k(cat) or k(obs) between NCS(-) and Cl(-) resulted from that between the stability constants K(st)=2x10(3) for [L1SZn(NCS)](2-) and 1x10(2) M(-1) for [L1SZnCl](2-) in D(2)O: for water-insoluble tris(2-benzimidazolylmethyl)amine L1, K(st)=1.8x10(4) for [L1Zn(NCS)](2-) and 1.5x10(3) M(-1) for [L1ZnCl](2-)in CD(3)CN/D(2)O (50% v/v). The crystal structure of anion-binding zinc model complexes [L1Zn(OH(2))](0.5)[L1ZnCl](0.5) (ClO(4))(1.5) 1(0.5)2(0.5)(ClO(4))(1.5) was revealed by X-ray crystallography. The geometry around Zn(2+) in 1 and 2 was tetrahedrally coordinated by three benzimidazolyl nitrogen atoms and one oxygen atom of H(2)O, or Cl(-).  相似文献   

15.
We have designed and synthesized new optically active bisviologens ([BNMV](4+)) containing a binaphthyl moiety to examine the stereoselective photoinduced electron-transfer (ET) reactions with zinc-substituted myoglobin (ZnMb) by flash photolysis. The photoexcited triplet state of ZnMb, (3)(ZnMb)*, was successfully quenched by [BNMV](4+) ions to form the radical pair of a ZnMb cation (ZnMb(.+)) and a reduced viologen ([BNMV](.3+)), followed by a thermal ET reaction to the ground state. The rate constants ( k(q)) for the ET quenching at 25 degrees C were obtained as k(q)( R)=(2.9+/-0.2)x10(7) M(-1) s(-1) and k(q)( S)=(2.2+/-0.2)x10(7) M(-1) s(-1), respectively. The ratio of k(q)( R)/ k(q)( S)=1.3 indicates that the ( R)-isomer of the chiral viologen preferentially quenches (3)(ZnMb)*. On the other hand, the rate constants ( k) for the thermal ET reaction from [BNMV](.3+) to ZnMb(-+) at 25 degrees C were k( R)=(1.2+/-0.1)x10(8) M(-1) s(-1) and k( S)=(0.47+/-0.03)x10(8) M(-1) s(-1), respectively, and the ratio remarkably increased to k( R)/ k( S)=2.6. The activation parameters, Delta H(not equal) and Delta S(not equal), were determined from the kinetic measurements at various temperatures (10-30 degrees C) to understand the ET mechanisms. In the quenching reaction, the energy differences of Delta Delta H*(R- S) and T Delta Delta S*( R- S) at 25 degrees C were calculated to be -3.9+/-1.6 and -3.3+/-0.2 kJ mol(-1), respectively, whereas Delta Delta H*( R-S)=7.7+/-1.9 kJ mol(-1 )and T Delta Delta S*( R-S)=9.9+/-0.5 kJ mol(-1 )were found for the thermal ET reaction. Therefore, the thermal ET reaction to the ground state was proved to be dominated by the entropy term, and the large stereoselectivity may arise from the decrease in charge repulsion between donor and acceptor.  相似文献   

16.
The enzymatic hydrolysis of butyrylcholine, catalyzed by horse serum butyrylcholinesterase (EC 3.1.1.8), was studied at 37 degrees C in Tris buffer (pH 7.5) by flow microcalorimetry. A convolution procedure, using the Gamma distribution to represent the impulse response of the calorimeter, was developed to analyze the microcalorimetric curves. After correction for buffer protonation, the hydrolysis reaction was found to be slightly endothermic, with Delta H=+9.8 kJ mol(-1). Enzyme kinetics was studied with both the differential and integrated forms of the Michaelis equation with equivalent results: Michaelis constant K(m)=3.3mM, catalytic constant k(cat)=1.7 x 10(3)s(-1), bimolecular rate constant k(s)=5.1 x 10(5)M(-1)s(-1). The reaction product, choline, was found to be a competitive inhibitor with a dissociation constant K(i)=9.1mM. Betaine had a slightly higher affinity for the enzyme, but the inhibition was only partial. This study confirms the usefulness of microcalorimetry for the kinetic study of enzymes and their inhibitors.  相似文献   

17.
The specific volumes of six 1,2-diacylphosphatidylcholines with monounsaturated acyl chains (diCn:1PC, n=14-24 is the even number of acyl chain carbons) in fluid bilayers in multilamellar vesicles dispersed in H(2)O were determined by the vibrating tube densitometry as a function of temperature. From the data obtained with diCn:1PC (n=14-22) vesicles in combination with the densitometric data from Tristram-Nagle et al. [Tristram-Nagle, S., Petrache, H.I., Nagle, J.F., 1998. Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys. J. 75, 917-925.] and Koenig and Gawrisch [Koenig, B.W., Gawrisch, K., 2005. Specific volumes of unsaturated phosphatidylcholines in the liquid crystalline lamellar phase. Biochim. Biophys. Acta 1715, 65-70.], the component volumes of phosphatidylcholines in fully hydrated fluid bilayers at 30 degrees C were obtained. The volume of the acyl chain CH and CH(2) group is V(CH)=22.30 A(3) and V(CH2) =A(3), respectively. The volume of the headgroup including the glyceryl and acyl carbonyls, V(H), and the ratio of acyl chain methyl and methylene group volumes, r=V(CH3):V(CH2) are linearly interdependent: V(H)=a-br, where a=434.41 A(3) and b=-55.36 A(3) at 30 degrees C. From the temperature dependencies of component volumes, their isobaric thermal expansivities (alpha(X)=V(X)(-1)(partial differential V(X)/ partial differential T) where X=CH(2), CH, or H were calculated: alpha(CH2)=118.4x10(-5)K(-1), alpha(CH)=71.0x10(-5)K(-1), alpha(H)=7.9x10(-5)K(-1) (for r=2) and alpha(H)=9.6x10(-5)K(-1) (for r=1.9). The specific volume of diC24:1PC changes at the main gel-fluid phase transition temperature, t(m)=26.7 degrees C, by 0.0621 ml/g, its specific volume is 0.9561 and 1.02634 ml/g at 20 and 30 degrees C, respectively, and its isobaric thermal expansivity alpha=68.7x10(-5) and 109.2x10(-5)K(-1) below and above t(m), respectively. The component volumes and thermal expansivities obtained can be used for the interpretation of X-ray and neutron scattering and diffraction experiments and for the guiding and testing molecular dynamics simulations of phosphatidylcholine bilayers in the fluid state.  相似文献   

18.
Shih I  Been MD 《Biochemistry》2000,39(31):9055-9066
A minimal kinetic mechanism for a trans-acting ribozyme derived from the HDV antigenomic RNA self-cleaving element was established from steady-state, pre-steady-state, single-turnover, and binding kinetics. Rate constants for individual steps, including substrate binding and dissociation, cleavage, and product release and binding, were measured at 37 degrees C at pH 8.0 in 10 mM Mg(2+) using oligonucleotides as either substrates, noncleavable analogues or 3' product mimics. A substrate containing a normal 3',5'-linkage was cleaved with a first-order rate constant (k(2)) of 0.91 min(-)(1). The association rate constant for the substrate to the ribozyme (2.1 x 10(7) M(-)(1) min(-)(1)) was at the lower range of the expected value for RNA duplex formation, and the substrate dissociated with a rate constant (1.4 min(-)(1)) slightly faster than that for cleavage. Thus the binary complex was not at equilibrium with free enzyme and substrate prior to the cleavage step. Following cleavage, product release was kinetically ordered in that the 5' product was released rapidly (>12 min(-)(1)) relative to the 3' product (6.0 x 10(-)(3) min(-)(1)). Rapid 5' product release and lack of a demonstrable binding site for the 5' product could contribute to the difficulty in establishing the ribozyme-catalyzed reverse reaction (ligation). Slow release of the 3' product was consistent with the extremely low turnover under steady-state conditions as 3' product dissociation was rate-limiting. The equilibrium dissociation constant for the substrate was 24-fold higher than that of the 3' cleavage product. A substrate with a 2',5'-linkage at the cleavage site was cleaved with a rate constant (k(2)) of 1.1 x 10(-)(2) min(-)(1). Thus, whereas cleavage of a 3',5'-linkage followed a Briggs-Haldane mechanism, 2', 5' cleavage followed a Michaelis-Menten mechanism.  相似文献   

19.
Previously, we reported the biochemical properties of RGA1 that is expressed in Escherichia coli (Seo et al., 1997). The activities of RGA1 that hydrolyzes and binds guanine nucleotide were dependent on the MgCl(2) concentration. The steady state rate constant (k(cat) ) for GTP hydrolysis of RGA1 at 2 mM MgCl(2) was 0.0075 +/- 0.0001 min(-1). Here, we examined the effects of pH and cations on the GTPase activity. The optimum pH at 2 mM MgCl(2) was approximately 6.0; whereas, the pH at 2 mM NH(4)Cl was approximately 4.0. The result from the cation dependence on the GTPase (guanosine 5'-triphosphatase) activity of RGA1 under the same condition showed that the GTP hydrolysis rate (k(cat)= 0.0353 min(-1)) under the condition of 2 mM NH(4)Cl at pH 4.0 was the highest. It corresponded to about 3.24-fold of the k(cat) value of 0.0109 min(-1) in the presence of 2 mM MgCl(2) at pH 6.0.  相似文献   

20.
A new Ru(II) complex, [Ru(bpy)(2)(dhipH3)](ClO4)(2) (in which bpy=2,2'-bipyridine, dhipH(3)=3,4-dihydroxy-imidado[4,5-f][1,10]-phenanthroline), was synthesized and characterized, and the pH effect on the emission spectra of the complex was studied. The interaction of the complex with calf thymus DNA was investigated by UV-visible and emission spectroscopy, and viscosity measurements. The results suggest that the complex acted as a sensitive luminescent pH sensor and a strong ct-DNA intercalator with an intrinsic binding constant of (4.0+/-0.7) x 10(5) M(-1) in buffered 50 mM NaCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号