首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The locust, Locusta migratoria, has the capacity to develop a behavioural fever which reduces fungal infection by Metarhizium anisopliae var acridum. We investigated hemocyte and blastospore kinetics in infected insects under conditions that did or did not allow thermoregulation. Hemocyte concentrations were severely reduced in inoculated insects that did not thermoregulate but remained similar to those of controls in inoculated insects that were allowed to thermoregulate. Reductions in hemocyte counts were accompanied by an increase in the concentration of blastospores. In non-thermoregulating insects, circulating blastospores were first observed two days post-inoculation and had heavily colonized the hemolymph by day 5; in contrast, no blastospores were recovered from hemolymph of inoculated-thermoregulating insects. We used fluorescein isothiocyanate (FITC)-labelled silica beads to examine in vivo phagocytosis in thermoregulating and non-thermoregulating locusts. In the absence of fungus, a greater proportion of beads were engulfed by hemocytes in thermoregulating than in non-thermoregulating locusts early (4 and 24h) after bead injection, but the proportions were similar thereafter. In infected locusts, phagocytosis in non-thermoregulating insects was progressively impaired; such impairment, however, was not observed in challenged, thermoregulating insects. Our results suggest that thermoregulation helped keep fungal growth in check, apparently through the maintenance of hemocyte population levels and the direct inhibition of blastospore propagation by elevated temperatures.  相似文献   

2.
【目的】探讨昆虫病原线虫小卷蛾斯氏线虫Steinernema carpocapsae All侵染对草地贪夜蛾Spodoptera frugiperda幼虫天然免疫反应的影响。【方法】借助倒置显微镜观察和鉴定草地贪夜蛾幼虫的血细胞类型,并对小卷蛾斯氏线虫侵染后不同时间的草地贪夜蛾幼虫血细胞总数目进行统计;通过倒置显微镜观察草地贪夜蛾幼虫对侵入的小卷蛾斯氏线虫的包囊反应;利用倒置荧光显微镜观察小卷蛾斯氏线虫侵染后的草地贪夜蛾幼虫血细胞对金黄色葡萄球菌Staphylococcus aureus的吞噬活性;检测小卷蛾斯氏线虫侵染后的草地贪夜蛾幼虫血淋巴中酚氧化酶(phenoloxidase, PO)活性、体内抗菌肽基因相对表达水平以及血浆的抗菌活性。【结果】从草地贪夜蛾幼虫体内共发现5种不同类型的血细胞,分别为原血细胞、粒细胞、类绛色细胞、珠血细胞和浆血细胞。注射1 μL侵染期(infective juveniles, IJs)小卷蛾斯氏线虫(3 IJs/μL)后9和12 h,草地贪夜蛾幼虫的血细胞总数目显著增多。草地贪夜蛾幼虫的血细胞不能包囊活的以及冷处死的小卷蛾斯氏线虫,但可以包囊热处死的线虫。活的小卷蛾斯氏线虫会显著抑制草地贪夜蛾幼虫血细胞对金黄色葡萄球菌的吞噬活性,但冷处死和热处死的线虫不能。注射1 μL(3 IJs/μL)小卷蛾斯氏线虫后,草地贪夜蛾幼虫血淋巴PO活性总体呈“下降 升高 下降”变化趋势;体内抗菌肽基因Attacin-A2, Attacin-B1, Cecropin-B3, Cecropin-D, Gallerimycin, Gloverin-3以及Lebocin-2的表达水平在线虫侵染后12 h时显著上调,24 h时恢复到对照水平或低于对照水平;血淋巴抗菌活性水平在小卷蛾斯氏线虫侵染后12 h时显著升高,24 h时与对照无显著差异。【结论】小卷蛾斯氏线虫在侵入早期会抑制草地贪夜蛾幼虫的天然免疫反应来建立感染;随后草地贪夜蛾的免疫系统会被激活试图抵御小卷蛾斯氏线虫的侵染;后期随着线虫的成功定殖,草地贪夜蛾的免疫系统最终被抑制或破坏。本研究所得结果为进一步揭示线虫 草地贪夜蛾的免疫互作机理奠定了基础,也为改善昆虫病原线虫对草地贪夜蛾的防治效果提供了理论依据。  相似文献   

3.
Extracellular nucleic acids play important roles in human immunity and hemostasis by inducing IFN production, entrapping pathogens in neutrophil extracellular traps, and providing procoagulant cofactor templates for induced contact activation during mammalian blood clotting. In this study, we investigated the functions of extracellular RNA and DNA in innate immunity and hemolymph coagulation in insects using the greater wax moth Galleria mellonella a reliable model host for many insect and human pathogens. We determined that coinjection of purified Galleria-derived nucleic acids with heat-killed bacteria synergistically increases systemic expression of antimicrobial peptides and leads to the depletion of immune-competent hemocytes indicating cellular immune stimulation. These activities were abolished when nucleic acids had been degraded by nucleic acid hydrolyzing enzymes prior to injection. Furthermore, we found that nucleic acids induce insect hemolymph coagulation in a similar way as LPS. Proteomic analyses revealed specific RNA-binding proteins in the hemolymph, including apolipoproteins, as potential mediators of the immune response and hemolymph clotting. Microscopic ex vivo analyses of Galleria hemolymph clotting reactions revealed that oenocytoids (5-10% of total hemocytes) represent a source of endogenously derived extracellular nucleic acids. Finally, using the entomopathogenic bacterium Photorhabdus luminescens as an infective agent and Galleria caterpillars as hosts, we demonstrated that injection of purified nucleic acids along with P. luminescens significantly prolongs survival of infected larvae. Our results lend some credit to our hypothesis that host-derived nucleic acids have independently been co-opted in innate immunity of both mammals and insects, but exert comparable roles in entrapping pathogens and enhancing innate immune responses.  相似文献   

4.
In vivo cells (hyphal bodies) of the hyphomycetous insect pathogen Beauveria bassiana collected from host Spodoptera exigua larval hemolymph were osmotically sensitive and lacked a well-defined cell wall. In light and electron microscope studies, a galactose-specific lectin purified from S. exigua hemolymph, concanavalin A (specific for alpha-mannose), and a polyclonal antibody to B. bassiana cell walls all bound to surfaces of in vitro-produced B. bassiana blastospores; however, none of these probes labelled the thin layer of extracellular material covering the plasma membranes of hyphal bodies. These cells were observed freely circulating in S. exigua hemolymph at 36 h postinfection, although immunocompetent hemocytes were known to be present. Additionally, association of hyphal bodies with hemocytes in monolayers was significantly less than for opsonized in vitro blastospores or submerged conidia. The absence of antigenically important galactomannan components on in vivo cells may therefore allow these cells to escape recognition and phagocytosis. Lack of structural components (e.g., chitin, as evidenced by the absence of binding of wheat germ agglutinin) may also be important with respect to evasion of host cellular defense mechanisms. Production of wall material resumed 48 to 60 h postinfection and therefore may coincide with loss of phagocytic capabilities of the hemocytes due to immunosuppressive effects of fungal metabolites. The protoplast-like cells may be formed by the action of hydrolytic enzymes in the hemocytes or by inhibition of fungal cell wall synthetases.  相似文献   

5.
The nematode Heterorhabditis bacteriophora is the vector for transmitting the entomopathogenic bacterium Photorhabdus luminescens between insect larvae. The dauer juvenile (DJ) stage nematode selectively retains P. luminescens in its intestine until it releases the bacteria into the hemocoel of an insect host. We report the results of studying the transmission of the bacteria by its nematode vector. Cells of P. luminescens labeled with green fluorescent protein preferentially colonized a region of the DJ intestine immediately behind the basal bulb, extending for various distances toward the anus. Incubation of DJ nematodes in vitro in insect hemolymph induced regurgitation of the bacteria. Following a 30-min lag, the bacteria migrated in a gradual and staggered movement toward and ultimately exited the mouth. This regurgitation reaction was induced by a low-molecular-weight, heat- and protease-stable, anionic component present in arthropod hemolymph and in supernatants from insect cell cultures. Nematodes anesthetized with levamisole or treated with the antihelmenthic agent ivermectin did not release their bacteria into hemolymph. The ability to visualize P. luminescens in the DJ nematode intestine provides the first clues to the mechanism of release of the bacteria during infection of insect larvae. This and the partial characterization of a component of hemolymph triggering release of the bacteria render this fascinating example of both a mutualistic symbiosis and disease transmission amenable to future genetic and molecular study.  相似文献   

6.
The insect parasitic nematodes Heterorhabditis spp. are mutualistically associated with entomopathogenic bacteria, Photorhabdus spp. A novel association has been detected between H. megidis isolate EU17 and the endospore-forming bacterium Paenibacillus nematophilus. P. nematophilus sporangia adhere to infective juveniles (IJs) of H. megidis and develop in insect hosts along with the nematodes and their symbiont. We tested the effects of P. nematophilus on H. megidis. The yield and quality (size, energy reserves, and storage survival) of IJs were not affected by co-culture in insects with P. nematophilus. Dispersal of IJs in sand and on agar was inhibited by adhering P. nematophilus sporangia: fewer than 2% of IJs with P. nematophilus sporangia reached the bottom of a sand column, compared to 30% of the control treatment. Sporangia significantly reduced infectivity of H. megidis for wax moth larvae in sand, but not in a close contact (filter paper) assay. The results suggest that P. nematophilus may reduce the transmission potential of H. megidis through impeding the motility of IJs.  相似文献   

7.
Humoral and cellular mechanisms of defense have been described for cephalopods, a relatively advanced group of mollusks. Typical of other mollusks, cephalopod agglutinins are the most documented component of humoral immunity. Lectins, which have agglutinating properties, have been described and characterized from octopuses. Agglutinins from cephalopod hemolymph have also been shown to agglutinate a variety of vertebrate red blood cells, as well as potential bacterial pathogens. Hemocytes are the primary component of cellular immunity. Although the hemocyte role in phagocytosis has been extensively studied in other mollusks, the mechanisms of phagocytosis have not been described extensively for cephalopods. Cephalopod hemocytes have phagocytic capabilities and may function in encapsulation and neutralization of foreign substances; however, the effects of environmental factors and the full extent of phagocytic capabilities of cephalopod hemocytes have not been reported. Hemocytes from cephalopods have a role in wound healing and inflammation which have been reported in detail by several investigators.  相似文献   

8.
This research examines possible factors limiting pathogen development and reproduction in a novel host insect. The nematode Heterorhabditis marelatus and its symbiotic bacterium, Photorhabdus luminescens, kill 98% of nematode-treated Colorado potato beetle (CPB) prepupae, but the nematode reproduces in only 1-6% of beetles. We examined nematode/bacterial inhibition at each step of the normal developmental pathway to determine host feature(s) limiting nematode reproduction. We found that in vivo encapsulation of nematodes occurred in only 1.6% of CPB, and in 5% of in vitro hanging drops of hemolymph. Thus, the cellular defense system did not strongly limit nematode reproduction in the CPB. The symbiotic bacterium was negatively affected by a heat-labile factor found in the CPB's hemolymph which often caused the bacterium to switch from the primary form that produces antibiotics and nutrients necessary for the nematodes' development, to a secondary form that provides only limited nutrients. A 58 kDa protein was isolated and bioassayed for activity against P. luminescens, but caused a delay in bacterial growth rather than the primary-secondary form switch. Thus, the identity of the heat-labile factor could not be confirmed as being the 58 kDa protein. The heat-labile factor did not directly affect the nematode. The addition of lipids in the form of olive oil to heated CPB hemolymph allowed nematodes to reproduce in 17% of hanging drops, in contrast to zero reproduction in hemolymph without oil. Reproductive nematodes were smaller when grown in CPB hemolymph than in hemolymph of the highly susceptible Galleria mellonella. These data suggest that both the toxic heat-labile factor and a lack of appropriate nutrients alter the CPB-bacterium-nematode interaction. These factors preclude the use of this otherwise highly effective nematode-bacterial complex in the longterm control of the CPB.  相似文献   

9.
The relationships between schistosomiasis and its intermediate host, mollusks of the genus Biomphalaria, have been a concern for decades. It is known that the vector mollusk shows different susceptibility against parasite infection, whose occurrence depends on the interaction between the forms of trematode larvae and the host defense cells. These cells are called amebocytes or hemocytes and are responsible for the recognition of foreign bodies and for phagocytosis and cytotoxic reactions. The defense cells mediate the modulation of the resistant and susceptible phenotypes of the mollusk. Two main types of hemocytes are found in the Biomphalaria hemolymph: the granulocytes and the hyalinocytes. We studied the variation in the number (kinetics) of hemocytes for 24 h after exposing the parasite to genetically selected and non-selected strains of Biomphalaria tenagophila, susceptible or not to infection by Schistosoma mansoni. The differences were analyzed referred to the variations in the number of hemocytes in mollusks susceptible or not to infection by S. mansoni. The hemolymph of the selected and non-selected snails was collected, and hemocytes were counted using a Neubauer chamber at six designated periods: 0 h (control, non-exposed individuals), 2 h, 6 h, 12 h, 18 h and, 24 h after parasite exposure. Samples of hemolymph of five selected mollusks and five non-selected mollusks were separately used at each counting time. There was a significant variation in the number of hemocytes between the strains, which indicates that defense cells have different behaviors in resistant and susceptible mollusks.  相似文献   

10.
11.
We have investigated the phagocytic activity and the production of reactive oxygen species (ROS) by hemocytes from the cattle tick Boophilus microplus. Two main types of hemocytes were detected in tick hemolymph: plasmatocytes and granulocytes. The plasmocytes were the most abundant cells, being responsible for the in vivo phagocytosis of yeast. ROS production was evaluated by luminol-amplified luminescence and phenol red oxidation. The luminescence increased when hemocytes were incubated with bacteria, zymosan, or phorbol 12-miristate 13-acetate (PMA). The luminescence was inhibited by superoxide dismutase and catalase, which are antioxidant enzymes that remove superoxide and hydrogen peroxide, respectively. The phenol red oxidation assay also showed an increase in the level of hydrogen peroxide produced by hemocytes stimulated with bacteria and PMA. Taken all together, our data indicate that tick hemocytes are able to produce ROS during the phagocytic process similarly to vertebrate phagocytes.  相似文献   

12.
In insect pathogen interactions, host developmental stage is among several factors that influence the induction of immune responses. Here, we show that the effectiveness of immune reactions to a pathogen can vary markedly within a single larval stage. Pre-wandering fifth-stage (day 5) larvae of the model lepidopteran insect Manduca sexta succumb faster to infection by the insect pathogenic bacterium Photorhabdus luminescens than newly ecdysed fifth-stage (day 0) caterpillars. The decrease in insect survival of the older larvae is associated with a reduction in both humoral and cellular defence reactions compared to less developed larvae. We present evidence that older fifth-stage larvae are less able to over-transcribe microbial pattern recognition protein and antibacterial effector genes in the fat body and hemocytes. Additionally, older larvae show reduced levels of phenoloxidase (PO) activity in the cell-free hemolymph plasma as well as a dramatic decrease in the number of circulating hemocytes, reduced ability to phagocytose bacteria and fewer melanotic nodules in the infected tissues. The decline in overall immune function of older fifth-stage larvae is reflected by higher bacterial growth in the hemolymph and increased colonization of Photorhabdus on the basal surface of the insect gut. We suggest that developmentally programmed variation in immune competence may have important implications for studies of ecological immunity.  相似文献   

13.
The two types of cells found in the hemolymph of the clam Tridacna maxima have been examined in vitro by light microscopy, and their morphological charcteristics described and illustrated. It was shown that the hemocytes, which exhibited rapidly spreading cytoplasm and extensive ruffled membrane activity, were able to phagocytose carbon particles experimentally introduced into the animals. Attention is drawn to the part that the phagocytic hemocytes of invertebrates may have to play in putative host defense mechanisms and physiological waste removal processes.  相似文献   

14.
Photorhabdus luminescens (Enterobacteriaceae) is a symbiont of entomopathogenic nematodes Heterorhabditis spp. (Nematoda: Rhabditida) used for biological control of insect pests. For industrial mass production, the nematodes are produced in liquid media, pre-incubated with their bacterial symbiont, which provides nutrients essential for the nematode's development and reproduction. Particularly under in vitro conditions, P. luminescens produces phase variants, which do not allow normal nematode development. The phase variants were distinguished based on dye absorption, pigmentation, production of antibiotic substances, occurrence of crystalline inclusion proteins and bioluminescence. To understand the significance of the phase shift for the symbiotic interaction between the bacterium and the nematode, feeding experiments tested the effect of homologous and heterologous P. luminescens phase variants isolated from a Chinese Heterorhabditis bacteriophora (HO6), the Heterorhabditis megidis type strain from Ohio (HNA) and the type strain of Heterorhabditis indica (LN2) on the in vivo and in vitro development and reproduction of the nematode species H. bacteriophora (strain HO6) and another rhabditid and entomopathogenic nematode, Steinernema carpocapsae (A24). In axenically cultured insect larvae (Galleria mellonella) and in vitro in liquid media, H. bacteriophora produced offspring on phase I of its homologous symbiont and on the heterologous symbiont of H. megidis, but not on the two corresponding phase II variants. In solid media, nematode yields were much lower on phase II than on phase I variants. On the heterologous phase I symbiont isolated from H. indica the development of H. bacteriophora was not beyond the fourth juvenile stage of the nematode in any of the media tested, but further progressed on phase II with even a small amount of offspring recorded in solid media. Infective juveniles of S. carpocapsae did not develop beyond the J3 stage on all phase I P. luminescens. They died in phase I P. luminescens isolated from H. bacteriophora. Development to adults was recorded for S. carpocapsae on all phase II symbionts and offspring were produced in all media except in liquid. It is concluded that a lack of essential nutrients or the production of toxins is not responsible for the negative impact of homologous phase II symbiont cells on the development and reproduction of H. bacteriophora. The infective juveniles of H. bacteriophora retained cells of the homologous phase I symbiont, but not phase II cells and cells from heterologous symbionts, indicating that the transmission of the symbiont by the infective juvenile is selective for phase I cells and the homologous bacterial associate.  相似文献   

15.
In many bivalve molluscs, lectins are present in the hemolymph and are thought to be important for internal host defense mechanisms. For this study, we purified a novel isoform of the Manila clam lectin (designated MCL-4) from the plasma of the Manila clam, Ruditapes philippinarum, using affinity chromatography and gel filtration. Native PAGE results showed that the MCL-4 consisted of 70 kDa protein. MCL-4 was found to be composed of 58-kDa and 43-kDa bands when examined using SDS-PAGE under reducing and non-reducing conditions. The native MCL-4 was revealed as a 147 kDa molecular mass protein by gel filtration. The purified MCL-4 agglutinates calcium-dependently in the erythrocytes of sheep and rabbit, but not in cells of the three species of marine bacteria tested. However, the phagocytic ability of the R. philippinarum hemocytes for the MCL-4-opsonized Vibrio tubiashii cells was significantly greater than that for the BSS-treated bacterial cells. Addition of purified MCL-4 markedly suppressed Alteromonas haloplanktis growth. These results suggest that MCL-4, because of its opsonizing and bacteriostatic properties, might contribute to the host defense mechanisms against invading microorganisms in R. philippinarum.  相似文献   

16.
Photorhabdus and Xenorhabdus are two genera of entomopathogenic bacteria having a mutualistic relationship with their respective nematode hosts, Heterorhabditis and Steinernema. One of the pathogenic mechanisms of these bacteria includes host immunodepression, which leads to lethal septicemia. It has been known that X. nematophila inhibits phospholipase A2 (PLA2) to induce host immunodepression. Here, we tested the hypothesis of PLA2 inhibition using another bacterial species involved in other genera. P. temperata subsp. temperata is the intestinal symbiont of an entomopathogenic nematode, H. megidis. The bacteria caused potent pathogenicity in a dose-dependent manner against the fifth instar larvae of a test target insect, Spodoptera exigua, as early as 24 h after the intra-hemocoelic injection. In response to the live bacterial injection, hemocyte nodulation (a cellular immune response) and prophenoloxidase (pPO) activation were inhibited, while the injection of heat-killed bacteria significantly induced both immune reactions. The immunodepression induced by the live bacteria was reversed by the addition of arachidonic acid, the catalytic product of phospholipase A2. In contrast, the addition of dexamethasone, a specific PLA2 inhibitor to the heat-killed bacterial treatment, inhibited both immune capacities. In addition to a previously known PLA2 inhibitory action of X. nematophila, the inhibition of P. temperata temperata on PLA2 suggests that bacteria symbiotic to entomopathogenic nematodes share a common pathogenic target to result in an immunodepressive state of the infected insects. To prove this generalized hypothesis, we used other bacterial species (X. bovienni, X. poinarii, and P. luminescens) involved in these two genera. All our experiments clearly showed that these other bacteria also share their inhibitory action against PLA2 to induce host immunodepression.  相似文献   

17.
The presence of ACTH and beta-endorphin immunoreactive molecules in the cell-free hemolymph and in the hemocytes of the freshwater snail Planorbarius corneus were demonstrated by immunocytochemistry and RIA tests. Only spreading phagocytic hemocytes were positive, in contrast with other hemocytes devoid of phagocytic activity, i.e., round hemocytes. These data were confirmed by flow cytometry. Another cell type with marked phagocytic activity, i.e., digestive cells of digestive gland, were also positive to anti-ACTH. Corticotropin-releasing factor immunoreactive molecules were found in the cell-free hemolymph and hemocytes, by RIA. Our data suggest that cells with phagocytic activity, the oldest immune response, may represent a suitable model to unravel the tangled web of the common ancestor of the immune and the neuroendocrine systems.  相似文献   

18.
This study attempts to investigate the relationship between the hemocytes in the two compartments: circulating peripheral lymph and the connective tissues. The hemocytes are compared with the vertebrate macrophages and constitute the principal line of defense against external aggression. The hemocytes were counted in circulating hemolymph and their phagocytic capability was evaluated in Schistosoma mansoni-infected Biomphalaria glabrata and the results were compared with those obtained from normal intact control snails. Although the number of circulating hemocytes revealed a mild increase in snails at the 6th week of infection, the overall findings were similar and pointed out that the cells in the two compartments are not functionally connected. However, the hemocytes found within the connective tissues of infected snails showed definite ultrastructural differences in the number and disposition of cytoplasmic prolongations and organelles in comparison with the hemocytes from non-infected snails. Histochemically, the staining for acid phosphatase activity served as a marker to hemocytes, sometimes being found in extracellular material at the foci of parasite-hemocyte interactions.  相似文献   

19.
Bacteria of the genus Xenorhabdus are mutually associated with entomopathogenic nematodes of the genus Steinernema and are pathogenic to a broad spectrum of insects. The nematodes act as vectors, transmitting the bacteria to insect larvae, which die within a few days of infection. We characterized the early stages of bacterial infection in the insects by constructing a constitutive green fluorescent protein (GFP)-labeled Xenorhabdus nematophila strain. We injected the GFP-labeled bacteria into insects and monitored infection. We found that the bacteria had an extracellular life cycle in the hemolymph and rapidly colonized the anterior midgut region in Spodoptera littoralis larvae. Electron microscopy showed that the bacteria occupied the extracellular matrix of connective tissues within the muscle layers of the Spodoptera midgut. We confirmed the existence of such a specific infection site in the natural route of infection by infesting Spodoptera littoralis larvae with nematodes harboring GFP-labeled Xenorhabdus. When the infective juvenile (IJ) nematodes reached the insect gut, the bacterial cells were rapidly released from the intestinal vesicle into the nematode intestine. Xenorhabdus began to escape from the anus of the nematodes when IJs were wedged in the insect intestinal wall toward the insect hemolymph. Following their release into the insect hemocoel, GFP-labeled bacteria were found only in the anterior midgut region and hemolymph of Spodoptera larvae. Comparative infection assays conducted with another insect, Locusta migratoria, also showed early bacterial colonization of connective tissues. This work shows that the extracellular matrix acts as a particular colonization site for X. nematophila within insects.  相似文献   

20.
Two general patterns of cell death are usually described in animals: necrosis and apoptosis. The former is a passive process that displays cellular swelling and lysis, while the latter involves cellular shrinkage and gene-mediated, ATP-dependent processes. Independent of the proximal cause of cell death, cell corpses are almost always removed by phagocytic cells. This is far from universal for all cells however, since phagocytic cells have not been noted during the programmed death of some skeletal muscles in insects. To further explore this, we used a variety of anatomical methods to examine the death of the intersegmental muscles (ISMs) of the moth Manduca sexta. The ISMs are giant cells that die during the 30 h following adult emergence. At no stage examined were hemocytes or other cells associated with the sarcolemma. The failure to detect macrophages was not due to technical limitations since immunohistochemical and functional studies demonstrate their presence in the hemolymph. The absence of phagocytosis to remove ISM corpses suggests that all of the biochemical machinery required for cellular destruction is resident within the ISMs themselves. This is consistent with analysis suggesting that Manduca does not possess sufficient numbers of macrophages to consume the ISMs. Given that insects do not have adaptive immunity, the ability to use a completely cell autonomous process may be a developmental option that cannot be exploited in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号