首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The common pattern of replicated evolution of a consistent shape-environment relationship might reflect selection acting in similar ways within each environment, but divergently among environments. However, phenotypic evolution depends on the availability of additive genetic variation as well as on the direction of selection, implicating a bias in the distribution of genetic variance as a potential contributor to replicated evolution. Allometry, the relationship between shape and size, is a potential source of genetic bias that is poorly understood. The threespine stickleback, Gasterosteus aculeatus, provides an ideal system for exploring the contribution of genetic variance in body shape allometry to evolutionary patterns. The stickleback system comprises marine populations that exhibit limited phenotypic variation, and young freshwater populations which, following independent colonization events, have often evolved similar phenotypes in similar environments. In particular, stickleback diversification has involved changes in both total body size and relative size of body regions (i.e., shape). In a laboratory-reared cohort derived from an oceanic Alaskan population that is phenotypically and genetically representative of the ancestor of the diverse freshwater populations in this region, we determined the phenotypic static allometry, and estimated the additive genetic variation about these population-level allometric functions. We detected significant allometry, with larger fish having relatively smaller heads, a longer base to their second dorsal fin, and longer, shallower caudal peduncles. There was additive genetic variance in body size and in size-independent body shape (i.e., allometric elevation), but typically not in allometric slopes. These results suggest that the parallel evolution of body shape in threespine stickleback is not likely to have been a correlated response to selection on body size, or vice versa. Although allometry is common in fishes, this study highlights the need for additional data on genetic variation in allometric functions to determine how allometry evolves and how it influences phenotypic evolution.  相似文献   

2.
Variation in static allometry, the power relationship between character size and body size among individuals at similar developmental stages, remains poorly understood. We tested whether predation or other ecological factors could affect static allometry by comparing the allometry between the caudal fin length and the body length in adult male guppies (Poecilia reticulata) among populations from different geographical areas, exposed to different predation pressures. Neither the allometric slopes nor the allometric elevations (intercept at constant slope) changed with predation pressure. However, populations from the Northern Range in Trinidad showed allometry with similar slopes but lower intercepts than populations from the Caroni and the Oropouche drainages. Because most of these populations are exposed to predation by the prawn Macrobrachium crenulatum, we speculated that the specific selection pressures exerted by this predator generated this change in relative caudal fin size, although effects of other environmental factors could not be ruled out. This study further suggests that the allometric elevation is more variable than the allometric slope.  相似文献   

3.
Allometry for sexual size dimorphism (SSD) is common in animals, but how different evolutionary processes interact to determine allometry remains unclear. Among related species SSD (male : female) typically increases with average body size, resulting in slopes of less than 1 when female size is regressed on male size: an allometric relationship formalized as 'Rensch's rule' . Empirical studies show that taxa with male-biased SSD are more likely to satisfy Rensch's rule and that a taxon's mean SSD is negatively correlated with allometric slope, implicating sexual selection on male size as an important mechanism promoting allometry for SSD. I use body length (and life-history) data from 628 (259) populations of seven species of anadromous Pacific salmon and trout (Oncorhynchus spp.) to show that in this genus life-history variation appears to regulate patterns of allometry both within and between species. Although all seven species have intraspecific allometric slopes of less than 1, contrary to expectation slope is unrelated to species' mean SSD, but is instead negatively correlated with two life-history variables: the species' mean marine age and variation in marine age. Second, because differences in marine age among species render SSD and body size uncorrelated, the interspecific slope is isometric. Together, these results provide an example of how evolutionary divergence in life history among related species can affect patterns of allometry for SSD across taxonomic scales.  相似文献   

4.
Sexual selection is a powerful force that influences the evolution of a variety of traits associated with female mate choice and male–male competition. Although other factors have been implicated, sexual selection may be particularly important in the evolution of the genitalia. Traits under sexual selection typically have high phenotypic variance and positive allometry relative to non-sexual traits. Here, we test the hypothesis that the baculum (os penis) of the muskrat (Ondatra zibethicus) is under sexual selection by examining phenotypic variance and allometry relative to non-sexual traits. Muskrats were sampled from Ontario, Canada, and a variety of traits measured. Measurements included baculum length and width, and three non-sexual traits (skull length, skull width, hind foot length). We used coefficient of variation (CV) and allometric slopes calculated using reduced major axis regression to test our hypotheses. Baculum traits had significantly higher CV’s relative to non-sexual traits. Baculum traits also showed positive allometry, whereas all non-sexual traits had negative allometric relationships. In addition, baculum width had higher CV’s and steeper allometric slopes than baculum length, indicating that, in muskrat, baculum width may be more influenced by sexual selection than baculum length. Positive allometry of the baculum is consistent with other examples of mammalian genitalia, but contrasts with negative allometry found in many insects. Other examples of positive allometry and high phenotypic variance of the baculum have suggested that females may use the baculum as an indicator of male quality. “Good genes” indicator traits may be particularly important in species that mate in an environmental context that prohibits female assessment of male quality. Muskrats mate aquatically, and thus females may be unable to properly assess males prior to copulation.  相似文献   

5.
Wood density plays a central role in the life-history variation of trees, and has important consequences for mechanical properties of wood, stem and branches, and tree architecture. Wood density, modulus of rupture, modulus of elasticity, and safety factors for buckling and bending were determined for saplings of 30 Bolivian rain forest tree species, and related to two important life-history axes: juvenile light demand and maximum adult stature. Wood density was strongly positively related to wood strength and stiffness. Species safety factor for buckling was positively related to wood density and stiffness, but tree architecture (height : diameter ratio) was the strongest determinant of mechanical safety. Shade-tolerant species had dense and tough wood to enhance survival in the understorey, whereas pioneer species had low-density wood and low safety margins to enhance growth in gaps. Pioneer and shade-tolerant species showed opposite relationships between species traits and adult stature. Light demand and adult stature affect wood properties, tree architecture and plant performance in different ways, contributing to the coexistence of rain forest species.  相似文献   

6.
7.
Long-term experimental plots of Norway spruce and European beech are investigated for a link between stand-level self-thinning and tree-level leaf biomass allometry. Self-thinning refers to the finding of Reineke (1933), who postulated for unthinned forest stands that with β = −1.605; i.e. an increase of mean (quadratic) diameter d q by 1% results in a decrease of tree number N by 1.605%. On the individual tree level, leaf biomass (w L) can be related allometrically to the tree diameter d: w L = ad α. If we assume that (a) the stands have reached the ceiling leaf area, (b) the specific leaf area (leaf area/leaf weight) is constant, and (c) differences resulting from the use of mean quadratic diameter or individual tree diameter are negligible, then the decrease in the stands’ leaf biomass due to the trees lost in self-thinning must be compensated by an equivalent increase in the remaining trees’ leaf biomass. This means, the absolute slope of the individual trees’ leaf biomass allometry α and the self-thinning allometry β would be equal and just have the opposite sign: α = −β. The analysis of the two long-term plots reveals that α is stronger than β, both for spruce (β = −1.744, α = 1.840) and especially for beech (β = −1.791, α = 2.181). The cause is traced back to a changing average specific leaf area during stand development [assumption (b) is wrong]. The results do not only bridge a gap between tree and stand allometry, but also emphasize an important effect for the understanding and modelling of the resource allocations in trees and forests.  相似文献   

8.
Many life-history parameters have condition-dependent optima, but individuals are often required to set the values of such parameters relatively early in development, before the relevant conditions can be assessed with full accuracy. If cues are available that predict such future conditions, then the condition-dependent parameter should evolve to assume values that deviate from the mean in the direction implied by the cues, but these deviations should regress towards the mean to the degree that the cues are less than fully reliable. Under mild assumptions, the slopes of the resulting relationships between condition-dependent life-history parameters and the variable conditions on which their optima depend will be the ideal slopes (those that would maximize fitness if the parameter could be chosen on the basis of full information) devalued by the squared correlation between the condition and the parameter.  相似文献   

9.
10.
11.
12.
Evolutionary Ecology - The need to respond quickly to the presence of an ephemeral resource required for breeding is often a feature of scramble competition mating systems. Scramble competition...  相似文献   

13.
Parasites are incredibly diverse. An important factor in the evolution of this diversity is the fact that many parasite species are restricted to 1, or just a few, host species. In addition, some parasites exhibit geographic specificity that is nested within their specificity to a particular species of host. The environmental factors that restrict parasites to particular regions within the host's range are poorly understood, and it is often difficult to know whether such patterns of geographic specificity are real, or merely artifacts of uneven host sampling. For over a decade, we sampled communities of ectoparasitic lice (Phthiraptera) from western scrub-jays (Aphelocoma californica) throughout their range in the United States, and found 3 common species of lice. Philopterus crassipes was found throughout the host range, whereas the other 2 species of lice had more restricted distributions. Brueelia deficiens was found only on the woodhouseii host subspecies group, and Myrsidea sp. was found largely on the californica host subspecies group. We suggest that differential tolerance to arid conditions and interspecific competition has led to the restricted geographic distributions of these 2 species of lice.  相似文献   

14.
Studies of intraspecific morphological variation in fishes have traditionally focused on freshwater rather than marine species. In addition, such studies typically focus on adults, although causes and intensities of selective pressures most likely vary through an individual's lifetime. In this study, body and head shape of a marine species, shiner perch Cymatogaster aggregata Gibbons were compared among localities along the Pacific Northwest coast of North America. Evidence was found for intraspecific variation in ontogenetic allometry, and for a closer correlation of body shape with environment rather than geographical proximity. This correlation with environment was more evident in younger fish, thereby demonstrating the importance of analysing multiple life stages. A common garden experiment suggests both environmental and genetic bases for the observed differences. Recognizing intraspecific ecomorphological complexity and its specificity to habitat and/or life stage can have important consequences for understanding the role of local adaptation and population dynamics in macroecology.  相似文献   

15.
Summary Interspecific scaling relationships (e.g. of limb size with body mass) in vertebrates are usually assumed to be functional (e.g. biomechanical) attributes. In this paper on the Anatidae, we study the scaling of wing length and tarsus length with body mass, relationships that can be expected to have biomechanical significance. At an interspecific level, both wing length and tarsus are positively allometric, a finding consistent with results from previous comparative avian studies. These trends remained significant in regressions controlling for the effects of phylogeny, but interspecific slopes were less steep within tribes than in the whole family (a taxon-level effect). We are not aware of any biomechanical resasons that explain these patterns satisfactorily. Intraspecific (static) allometries in Green-winged Teal (Anas crecca) and Marbled Teal (Marmaronetta angustirostris) are different: wing length is negatively allometric and tarsus is isometric. These anomalies suggest that interspecific and intraspecific scaling relationships do not share common causes. Our results bring into question the significance of interspecific allometries in vertebrate morphology, which may to some extent be non-functional by-products of morphological optimisation processes within species and ecological differences between them.
Vergleich inter- und intraspezifisher Allometrien bei Anatiden
Zusammenfassung Bei Vertebraten werden auf dem interspezifischem Niveau Größenbeziehungen (z. B. Gliedmaßenlänge mit Körpergewicht) üblicherweise funktional (z. B. bio-mechanisch) erklärt. In der vorliegende Studie untersuchen wir die Größenbeziehungen von Flügel- und Tarsuslänge mit der Körpermasse bei Anatiden. Es ist zu erwarten, daß diese Beziehungen biomechanische Bedeutung haben. Auf dem interspefischen Niveau (morphometrische Daten von 42 westpaläarktischen Arten wurden untersucht) sind sowohl Flügellänge als auch Tarsuslänge positiv allometrisch, d. h. länger mit zunehmender Masse. Dieses Ergebnis stimmt mit früheren, vergleichenden Studien an Vögeln überein. Diese Trends waren auch in Regressionsanalysen signifikant, in denen auf die Effekte der Phylogenie kontrolliert wurde. Allerdings, waren die interspezifischen Steigungen innerhalb der Triben geringer als in ganzen Familien (Effekt des taxonomischen Niveaus). Für diese Muster haben wir keine befriedigende biomechanische Erklärung. Intraspezifische (statische) Allometrien in einjährigen Krickenten (Anas crecca) und Marmelenten (Marmaronetta angustirostris) unterscheiden sich: die Flügellänge ist hier negativ allometrisch (d. h. relativ kürzer bei steigender Masse), die Tarsuslänge ist isometrisch. Diese Anomalien weisen darauf hin, dass inter-und intraspezifischen Größenbeziehungen keine gemeinsame Erklärung zugrunde liegen. Unsere Ergebnisse stellen die Bedeutung von interspezifischen Allometrien in der Morphologie von Vertebraten in Frage. Sie könnten zum Teil nichtfunktionelle Nebenprodukte von morphologischer Spezialisierung innerhalb von Arten, aber auch von ökologischen Unterschieden zwischen Arten sein.
  相似文献   

16.
Organic correlation and allometry   总被引:3,自引:0,他引:3  
KERMACK KA  HALDANE JB 《Biometrika》1950,37(1-2):30-41
  相似文献   

17.
Understanding El Ni?o/Southern Oscillation (ENSO) and its biological consequences is hindered by a lack of high-resolution, long-term data from the tropical western Pacific. We describe a preliminary, 6 year dataset that shows tightly coupled ENSO-related bio-physical dynamics in a seawater lake in Palau, Micronesia. The lake is more strongly stratified during La Ni?a than El Ni?o conditions, temperature anomalies in the lake co-vary strongly with the Ni?o 3.4 climate index, and the abundance of the dominant member of the pelagic community, an endemic subspecies of zooxanthellate jellyfish, is temperature associated. These results have broad relevance because the lake: (i) illustrates an ENSO signal that is partly obscured in surrounding semi-enclosed lagoon waters and, therefore, (ii) may provide a model system for studying the effects of climate change on community evolution and cnidarian-zooxanthellae symbioses, which (iii) should be traceable throughout the Holocene because the lake harbours a high quality sediment record; the sediment record should (iv) provide a sensitive and regionally unique record of Holocene climate relevant to predicting ENSO responses to future global climate change and, finally, (v) seawater lake ecosystems elsewhere in the Pacific may hold similar potential for past, present, and predictive measurements of climate variation and ecosystem response.  相似文献   

18.
Static adult craniometric allometry was evaluated in a sample of 66Otolemur crassicaudatus skulls (34 males, 32 females). Although cranial measures were equally well correlated to skull length in males and females, there were noteworthy differences in the exponential values between the sexes. These results underlined the need for caution when allometric analyses are based on pooled data. From the cranial allometric analyses it is concluded that the longer the skull, the shorter and the narrower the maxilla, and the broader the bizygomatic distance. Although cranial length increased proportionately to the increase in skull length, the cranial width in females was positively allometric whilst in males it was negatively allometric. Allometric analyses of mandibular dimensions suggest that larger animals will have proportionately longer mandibulae, which will, in turn, be relatively wider across the gonia, yet shallower behind the first molars. It is postulated that the disproportionate widening of the zygomata might be related to the widening across the gonia.  相似文献   

19.
The primate distal humerus has been used both in phylogenetic reconstruction and in assessing locomotor and postural adaptations. This study uses an allometric approach to predict locomotor patterns of extant primates regardless of phylogenetic position. By showing the relationship between form and function in living primate taxa it will be possible to use this data set to predict locomotor behavior of extinct primates. Several linear measurements were taken from the distal humerus of 71 extant primate species (anthropoids and prosimians). Allometric regressions of each measurement were performed with mandibular M2 area as a surrogate for body size. These measurements were used to determine if significant differences in distal humerus morphology exist among locomotor groups. The results were then used to test several hypotheses about the relationship between humeral form and function. For example, the hypothesis that suspensory primates have a large medial epicondyle is confirmed; the hypothesis that terrestrial quadrupeds have a deep olecranon fossa could not be confirmed with quantitative data. In addition to this hypothesis testing, the residuals from the allometric regressions of the humeral measurements were used in a discriminant functions analysis to estimate locomotor behavior from distal humerus morphology. The discriminant functions analysis correctly reclassified 64/71 (90%) species.  相似文献   

20.
Disagreement is current over the question of whether relatively large teeth in some large primates are a natural outcome of growth trends instead of an indication of intrinsic differences. A cross-primate survey of dental scaling relative to skull (and inferred body) size is given in this study, using a principal component technique to measure the multivariate growth relation between two sets of data: dental size and cranial size. Cheek teeth are strongly positively allometric in restriced taxonomic groups, especially in cercopithecoids. Conversely, the allometry drops to an almost linear proportional growth relation when variation in diet is controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号