首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Yemiş O  Mazza G 《Bioresource technology》2011,102(15):7371-7378
Furfural is a biomass derived-chemical that can be used to replace petrochemicals. In this study, the acid-catalyzed conversion of xylose and xylan to furfural by microwave-assisted reaction was investigated at selected ranges of temperature (140-190 °C), time (1-30 min), substrate concentration (1:5-1:200 solid:liquid ratio), and pH (2-0.13). We found that a temperature of 180 °C, a solid:liquid ratio of 1:200, a residence time of 20 min, and a pH of 1.12 gave the best furfural yields. The effect of different Brønsted acids on the conversion efficiency of xylose and xylan was also evaluated, with hydrochloric acid being found to be the most effective catalyst. The microwave-assisted process provides highly efficient conversion: furfural yields obtained from wheat straw, triticale straw, and flax shives were 48.4%, 45.7%, and 72.1%, respectively.  相似文献   

2.
Rice straw was treated with a mixed solution of acetic acid and propionic acid to enhance its biodegradability. The effect of acid concentration, pretreatment time, and the ratio of solid to liquid on the delignification performance of rice straw were investigated. It was found that the optimal conditions for hydrolysis were 0.75 mol/L acid concentration, 2 h pretreatment time and 1:20 solid to liquid ratio. Batch methane fermentation of untreated rice straw, pretreated rice straw, and the hydrolysates (the liquid fraction) of pretreatment were conducted at 35 °C for 30 days, and the results indicated that methane production of rice straw can be enhanced by dilute organic acid pretreatment. Moreover, most of the acid in hydrolysates can also be converted into methane gas.  相似文献   

3.
Hemicellulosic hydrolyzate obtained from rice straw was evaluated to determine if it was a suitable fementation medium for the production of xylitol byCandida mogii ATCC 18364. To obtain xylose selectively from rice straw, it is important to establish rapid hydrolysis conditions that yield xylose-rich substrates. The results of hydrolysis experiments indicated that the optimal reaction conditions for the recovery of xylose from rice straw hemicellulose were obtained using a sulfuric acid concentration of 1.5%, a reaction temperature of 130°C, a reaction time of 20 min and a solid to liquid ratio of 1∶10. Because the fermentation of concentrated acid hydrolyzates can be inhibited by compounds present in the raw material or produced during the hydrolysis process, various methods were tested to determine if they could detoxify the hydrolyzates and thus improve xylitol production. The greatest xylitol yield (0.53 g/g) and volumetric productivity (0.38 g/L·h) were obtained when an overlimed hydrolyzate was treated with activated charcoal.  相似文献   

4.
Chen H  Yu B  Jin S 《Bioresource technology》2011,102(3):3568-3570
In this study, solid superacid was employed to catalyze the decomposition of steam exploded rice straw (SERS) for the production of levulinic acid, a versatile platform chemical. The results revealed that solid superacid, S(2)O(8)(2-)/ZrO(2)-SiO(2)-Sm(2)O(3), could be used as a substitute for homogenous acid to catalyze the production of LA from SERS and LA yield increased with the addition of solid superacid. It was also found that steam explosion combined with superfine grinding of rice straw could effectively increase LA yield for reducing particle size of rice straw and enhancing the accessibility of cellulose. Under optimal conditions of 200°C, 10 min, 13.3% of solid superacid to pretreated rice straw, and 1:15 of solid-liquid ratio, LA yield of the superfine grinding SERS was 70% of the theoretical yield, which was equivalent with the homogeneous acid-catalyzed production of LA.  相似文献   

5.
纤维素酶降解小麦秸秆最适条件的研究及其动力学分析   总被引:2,自引:0,他引:2  
以小麦秸秆为原料,通过正交实验对纤维素酶降解秸秆纤维的影响因素进行了研究。结果表明,影响小麦秸秆降解的因素依次为:酶量>酶解时间>料液比>反应温度,其最适条件是:加酶量为40u/g,酶解时间为10h,反应温度为40℃,料液比为1∶3,总糖含量达到43.24%。以米氏方程为基础,建立起最适酶解条件下总纤维素降解的动力学模型。  相似文献   

6.
超临界下有机酸对稻秆水解糖化的影响   总被引:2,自引:0,他引:2  
采用间歇式反应器在超临界条件下,以有机酸(甲酸、乙酸和丙酸)为催化剂对稻秆进行水解糖化研究,重点考察反应温度、反应时间、固液比对还原糖产率的影响。实验表明:有机酸的加入有利于稻秆的水解糖化,稻秆水解速率和还原糖产量都有所提高,这种趋势在加入甲酸时最为明显;随着反应时间的延长,还原糖产量会逐渐减少;适当提高固液比有助于增加还原糖产量。稻秆超临界水解糖化的最佳条件:甲酸体积分数3%、固液比4:60(g/mL)、反应温度410℃、反应时间5min,在此条件下,还原糖产量最高,达6.65g/L。  相似文献   

7.
以玉米秸秆为原料,以麸皮和异Vc钠生产废液(WEP)为辅料进行生物蛋白饲料固态发酵研究.通过菌种配伍试验,确定了混菌发酵菌种为白地霉、产朊假丝酵母和枯草芽孢杆菌.在此基础上通过单因素优化试验确定了秸秆蛋白饲料的最优发酵条件:以玉米秸秆(5 g)和麸皮(1 g)为基料,4%WEP营养液,固液比1:4(g/mL),初始pH值4.5;以麸皮浸汁作种子培养液,种龄24 h,各菌接种比例为产朊假丝酵母∶白地霉∶枯草芽孢杆菌=3:1:1,接种量2 mL;28℃、静置发酵2 d,在此条件下,秸秆饲料中真蛋白含量为6.21%,比对照提高了23.95%.该研究为秸秆和异Vc钠生产废液的高质化利用提供了新的思路和途径.  相似文献   

8.
Characteristics of degraded cellulose obtained from steam-exploded wheat straw   总被引:13,自引:0,他引:13  
The isolation of cellulose from wheat straw was studied using a two-stage process based on steam explosion pre-treatment followed by alkaline peroxide post-treatment. Straw was steamed at 200 degrees C, 15 bar for 10 and 33 min, and 220 degrees C, 22 bar for 3, 5 and 8 min with a solid to liquid ratio of 2:1 (w/w) and 220 degrees C, 22 bar for 5 min with a solid to liquid ratio of 10:1, respectively. The steamed straw was washed with hot water to yield a solution rich in hemicelluloses-derived mono- and oligosaccharides and gave 61.3%, 60.2%, 66.2%, 63.1%, 60.3% and 61.3% of the straw residue, respectively. The washed fibre was delignified and bleached by 2% H2O2 at 50 degrees C for 5 h under pH 11.5, which yielded 34.9%, 32.6%, 40.0%, 36.9%, 30.9% and 36.1% (% dry wheat straw) of the cellulose preparation, respectively. The optimum cellulose yield (40.0%) was obtained when the steam explosion pre-treatment was performed at 220 degrees C, 22 bar for 3 min with a solid to liquid ratio of 2:1, in which the cellulose fraction obtained had a viscosity average degree of polymerisation of 587 and contained 14.6% hemicelluloses and 1.2% klason lignin. The steam explosion pre-treatment led to a significant loss in hemicelluloses and alkaline peroxide post-treatment resulted in substantial dissolution of lignin and an increase in cellulose crystallinity. The six isolated cellulose samples were further characterised by FT-IR and 13C-CP/MAS NMR spectroscopy and thermal analysis.  相似文献   

9.
Levulinic acid has potential as an important basic chemical material. This study proposed a method of making levulinic acid using abundant and low cost whole kernel sorghum grain as the raw material. Flour made from grinding whole kernel sorghum grains was blended with 2%, 5% and 8% aqueous solutions of sulfuric acid. Mixtures were heated to 160 or 200 degrees C in a pressurized reactor. A stepwise heating scheme helped improve the yield of levulinic acid. Levulinic acid yield was determined based on sorghum flour content, as opposed to total sorghum mass. Levulinic acid yield increased as reaction temperature increased. Higher sulfuric acid concentration also significantly increased the levulinic acid yield. However, flour loading had an adverse effect on levulinic acid yield. A maximum yield of 32.6% levulinic acid was achieved at 200 degrees C, 8% sulfuric acid concentration and 10% flour loading. A linear regression model was capable of predicting the levulinic acid yield with respect to effects of reaction temperature, mineral acid concentration and flour loading (R2 = 0.88).  相似文献   

10.
酵母发酵玉米秸秆水解液产麦角甾醇应用研究   总被引:1,自引:0,他引:1  
宋公明  刘娇  薛冬桦 《微生物学通报》2008,35(12):1862-1867
生物质是一种可再生资源,生物质发酵可产生高端化工产品.本文主要探讨蒸汽爆破处理玉米秸秆及水解可发酵单糖,考察酵母发酵玉米秸秆糖化液产麦角甾醇的应用研究.实验结果表明:当固液比10%,盐酸浓度1.5%,90℃水解反应3 h,还原糖含量达到53.3%,纤维素转化率79%.发酵工艺参数为玉米秸秆糖化液6.0°Bx,玉米浆4%,pH 7.5,接种量10%,28℃摇床振荡培养32 h,细胞生物量达8.5 g/L,麦角甾醇含量可达2.35%.同时对玉米秸秆发酵产麦角甾醇晶体进行结构表征.  相似文献   

11.
Alkaline wet oxidation pre-treatment (water, sodium carbonate, oxygen, high temperature and pressure) of wheat straw was performed as a 2(4-1) fractional factorial design with the process parameters: temperature, reaction time, sodium carbonate and oxygen. Alkaline wet oxidation was an efficient pre-treatment of wheat straw that resulted in solid fractions with high cellulose recovery (96%) and high enzymatic convertibility to glucose (67%). Carbonate and temperature were the most important factors for fractionation of wheat straw by wet oxidation. Optimal conditions were 10 min at 195 degrees C with addition of 12 bar oxygen and 6.5 g l(-1) Na2CO3. At these conditions the hemicellulose fraction from 100 g straw consisted of soluble hemicellulose (16 g), low molecular weight carboxylic acids (11 g), monomeric phenols (0.48 g) and 2-furoic acid (0.01 g). Formic acid and acetic acid constituted the majority of degradation products (8.5 g). The main phenol monomers were 4-hydroxybenzaldehyde, vanillin, syringaldehyde. acetosyringone (4-hydroxy-3,5-dimethoxy-acetophenone), vanillic acid and syringic acid, occurring in 0.04-0.12 g per 100 g straw concentrations. High lignin removal from the solid fraction (62%) did not provide a corresponding increase in the phenol monomer content but was correlated to high carboxylic acid concentrations. The degradation products in the hemicellulose fractions co-varied with the pre-treatment conditions in the principal component analysis according to their chemical structure, e.g. diacids (oxalic and succinic acids), furan aldehydes, phenol aldehydes, phenol ketones and phenol acids. Aromatic aldehyde formation was correlated to severe conditions with high temperatures and low pH. Apart from CO2 and water, carboxylic acids were the main degradation products from hemicellulose and lignin.  相似文献   

12.
The objective of this study was to determine the effectiveness of different organic acids (maleic, succinic, and oxalic acid) on enzymatic hydrolysis and fermentation yields of wheat straw. It was also aimed to optimize the process conditions (temperature, acid concentration, and pretreatment time) by using response surface methodology (RSM). In line with this objective, the wheat straw samples were pretreated at three different temperatures (170, 190, and 210°C), acid concentrations (1%, 3%, and 5%) and pretreatment time (10, 20, and 30 min). The findings show that at extreme pretreatment conditions, xylose was solubilized in liquid phase, causing an increase in cellulose and lignin content of biomass. Enzymatic hydrolysis experiments revealed that maleic and oxalic acids were quite effective at achieving high sugar yields (>90%) from wheat straw. In contrast, the highest sugar yields were 50–60%, when the samples were pretreated with succinic acid, indicating that succinic acid was not as effective. The optimum process conditions for maleic acid were, 210°C, 1.08% acid concentration, and 19.8 min; for succinic acid 210°C, 5% acid concentration, and 30 min; for oxalic acid 210°C, 3.6% acid concentration, and 16.3 min. The ethanol yields obtained at optimum conditions were 80, 79, and 59% for maleic, oxalic and succinic acid, respectively. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1487–1493, 2016  相似文献   

13.
Lignocellulosic wastes, including corn stalks and wheat straw, were pretreated and hydrolyzed with combined supercritical and subcritical hydrothermal technology. Soluble sugars were collected by pre-washing the crushed materials before hydrolysis. The effects of solid–liquid ratio, temperature, and reaction time on oligosaccharide production were investigated and the optimum supercritical conditions were found to be 20 mg/2.5 ml water, 384 °C, 17 s for corn stalks and 20 mg/2.5 ml water, 384 °C, 19 s for wheat straw. Subsequent subcritical processing of the hydrolyzate (with or without the water extract) from supercritical treatment was guided by a previous analysis of cellulose hydrolysis kinetics. The highest yield of fermentable hexoses from corn stalks (27.4% of raw material) was obtained at 280 °C, 27 s, and from wheat straw (6.7% of raw material) at 280 °C, 54 s. This study provides novel key parameters for fermentable hexose production from lignocellulosic feedstocks using combined supercritical and subcritical hydrothermal treatment.  相似文献   

14.
《Process Biochemistry》2010,45(7):1181-1186
The influence of various low temperature (140 °C) pretreatments, using different acid and alkaline catalysts and different pH values, was studied for enzymatic hydrolysis of wheat straw. The pretreated wheat straw was treated by a standard blend of Celluclast 1.5L and Novozym 188. While pretreatment at pH 1 gave the highest yield of saccharides in the liquid fraction, the solid fraction was more susceptible to enzymatic attack when pretreated at pH 13. The highest yields were obtained after pretreatment with hydrochloric acid at pH 1, and with sodium hydroxide at pH 13 when enzymatic hydrolysis was employed. A two-step pretreatment strategy at pH 1 (hydrochloric acid) and subsequently at pH 13 (sodium hydroxide) released 69% and 95% of the theoretical maximal amounts of glucose and xylose, respectively. Furthermore, this two-step pretreatment removed 68% of the lignin from the straw with only minor losses of monosaccharides and production of only low amounts of inhibitors. Type of catalyst and pH indeed influenced the monosaccharide yields and lignin removal from wheat straw, and need more attention in the choice of pretreatment strategy.  相似文献   

15.
Solid-state anaerobic digestion of spent wheat straw from horse stall   总被引:6,自引:0,他引:6  
Cui Z  Shi J  Li Y 《Bioresource technology》2011,102(20):9432-9437
The spent wheat straw from horse stall bedding has lower cellulose and hemicellulose contents, but higher volatile fatty acid content than raw wheat straw. Biogas production from solid-state anaerobic digestion (SS-AD) of spent wheat straw and raw wheat straw was compared in this study. The SS-AD tests were conducted at 22% total solids (TS) content using inoculum from a liquid AD system at three feedstock-to-inoculum (F/I) ratios of 2.0, 4.0, and 6.0. Daily methane yields of spent wheat straw peaked 8 and 3 days earlier than those of raw wheat straw at F/I ratios of 2.0 and 4.0, respectively. The highest methane yield of 150.0 L/kg volatile solids (VS) was obtained from spent wheat straw at an F/I ratio of 4.0, which was 56.2% higher than that of raw wheat straw. The corresponding cellulose and hemicellulose degradation of spent wheat straw was 24.1% and 49.4% higher than those of raw wheat straw, respectively.  相似文献   

16.

Background  

In this study, the dilute maleic acid pretreatment of wheat straw is optimized, using pretreatment time, temperature and maleic acid concentration as design variables. A central composite design was applied to the experimental set up. The response factors used in this study are: (1) glucose benefits from improved enzymatic digestibility of wheat straw solids; (2) xylose benefits from the solubilization of xylan to the liquid phase during the pretreatment; (3) maleic acid replenishment costs; (4) neutralization costs of pretreated material; (5) costs due to furfural production; and (6) heating costs of the input materials. For each response factor, experimental data were fitted mathematically. After data translation to €/Mg dry straw, determining the relative contribution of each response factor, an economic optimization was calculated within the limits of the design variables.  相似文献   

17.
Bioethanol production from ammonia percolated wheat straw   总被引:2,自引:0,他引:2  
This study examined the effectiveness of ammonia percolation pretreatment of wheat straw for ethanol production. Ground wheat straw at a 10% (w/v) loading was pretreated with a 15% (v/v) ammonia solution. The experiments were performed at treatment temperature of 50∼170°C and residence time of 10∼150 min. The solids treated with the ammonia solution showed high lignin degradation and sugar availability. The pretreated wheat straw was hydrolyzed by a cellulase complex (NS50013) and β-glucosidase (NS50010) at 45°C. After saccharification, Saccharomyces cerevisiae was added for fermentation. The incubator was rotated at 120 rpm at 35°C. As a result of the pretreatment, the delignification efficiency was > 70% (170°C, 30 min) and temperature was found to be a significant factor in the removal of lignin than the reaction time. In addition, the saccharification results showed an enzymatic digestibility of > 90% when 40 FPU/g cellulose was used. The ethanol concentration reached 24.15 g/L in 24 h. This paper reports a total process for bioethanol production from agricultural biomass and an efficient pretreatment of lignocellulosic material.  相似文献   

18.
Tannase production by Paecilomyces variotii   总被引:2,自引:0,他引:2  
Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of Paecilomyces variotii. A preliminary study was conducted to evaluate the effects of variables, including temperature ( degrees C), residue (%) (coffee husk:wheat bran), tannic acid (%) and salt solutions (%) on the production of tannase during 3, 5 and 7 days of fermentation. Among these variables, temperature, residues and tannic acid had significant effects on tannase production. The variables were optimized using surface response methodology. The best conditions for tannase production were: temperature (29-34 degrees C); tannic acid (8.5-14%); % residue (coffee husk:wheat bran 50:50) and incubation time of 5 days. The supplementation of external nitrogen and carbon sources at 0.4%, 0.8% and 1.2% concentration on tannase production were studied in the optimized medium. Three different nitrogen sources included yeast extract, ammonia nitrate and sodium nitrate along with carbon source (starch) were studied. Only ammonia nitrate showed a significant effect on tannase production. After the optimization process, the tannase activity increased 8.6-fold.  相似文献   

19.
采用H2 SO4催化和自催化乙醇法对麦秆进行预处理,比较预处理后麦秆的主要化学组成、纤维素酶解性能和半同步糖化发酵生产乙醇特性,并进行物料衡算。结果表明:H2 SO4催化和自催化乙醇预处理过程中纤维素固体回收率大于90%。添加非离子表面活性剂吐温20和吐温80没有显著提高H2 SO4催化乙醇预处理后纤维素的酶解葡萄糖得率及半同步糖化发酵过程中乙醇的产量,而对自催化乙醇处理后麦秆的酶解和半同步糖化发酵过程有一定程度的促进作用,相应的酶解葡聚糖转化率由72.7%提高到85.0%,而半同步糖化发酵过程中乙醇质量浓度提高了11.4%。物料衡算结果表明:酸催化和自催化乙醇预处理后葡聚糖回收率分别为91.0%和95.4%;半同步糖化发酵生产乙醇的得率分别为10.4和11.6 g(按100 g原料计)。  相似文献   

20.
绿色木霉ZY-1固态发酵产纤维素酶   总被引:1,自引:0,他引:1  
利用筛选的绿色木霉ZY-1(Trichoderma viride ZY-1)固态发酵产纤维素酶,采用稻草和麸皮为底物,考察稻草与麸皮比例随发酵时间对产酶的影响。结果表明:底物中,在m(稻草):m(麸皮)为0:5和1:4时,发酵48h,pH保持4.5左右,还原糖量急剧上升,胞外蛋白产量最低;仅以稻草作底物时,整个发酵过程中pH约为7,还原糖量最低,胞外蛋白产量较高而滤纸酶活、羧甲基纤维素酶(CMCase)和β-葡萄糖苷酶(β-Gase)酶活均较低;在m(稻草):m(麸皮)为3:2时,发酵96h,滤纸酶活达最大值5.01U/g干曲;m(稻草):m(麸皮)为1:4时,发酵96h,β-Gase酶活达最大值4.6U/g干曲;m(稻草):m(麸皮)为4:1时,发酵72h,CMCase酶活达最大值6.01U/g干曲。因此,底物中存在适量的稻草和麸皮有利于Trichoderma viride ZY—1产纤维素酶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号