首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiac mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. The protective effects of caffeic acid on mitochondrial dysfunction in isoproterenol-induced myocardial infarction were studied in Wistar rats. Rats were pretreated with caffeic acid (15 mg/kg) for 10 days. After the pretreatment period, isoproterenol (100 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days to induce myocardial infarction. Isoproterenol-induced rats showed considerable increased levels of serum troponins and heart mitochondrial lipid peroxidation products and considerable decreased glutathione peroxidase and reduced glutathione. Also, considerably decreased activities of isocitrate, succinate, malate, α-ketoglutarate, and NADH dehydrogenases and cytochrome-C-oxidase were observed in the mitochondria of myocardial-infarcted rats. The mitochondrial calcium, cholesterol, free fatty acids, and triglycerides were considerably increased and adenosine triphosphate and phospholipids were considerably decreased in isoproterenol-induced rats. Caffeic acid pretreatment showed considerable protective effects on all the biochemical parameters studied. Myocardial infarct size was much reduced in caffeic acid pretreated isoproterenol-induced rats. Transmission electron microscopic findings also confirmed the protective effects of caffeic acid. The possible mechanisms of caffeic acid on cardiac mitochondria protection might be due to decreasing free radicals, increasing multienzyme activities, reduced glutathione, and adenosine triphosphate levels and maintaining lipids and calcium. In vitro studies also confirmed the free-radical-scavenging activity of caffeic acid. Thus, caffeic acid protected rat’s heart mitochondria against isoproterenol-induced damage. This study may have a significant impact on myocardial-infarcted patients.  相似文献   

2.
Ketoprofen is widely used to alleviate pain and inflammation in clinical medicine; however, this drug may cause oxidative stress and lead to gastrointestinal (GI) ulcers. We previously reported that nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in protecting cells against reactive oxygen species, and it facilitates the prevention of ketoprofen-induced GI mucosal ulcers. Recent reports suggested that Nrf2 becomes unstable in the absence of DJ-1/PARK7, attenuating the activity of Nrf2-regulated downstream antioxidant enzymes. Thus, increasing Nrf2 translocation by DJ-1 may represent a novel means for GI protection. In vitro, caffeic acid increases the nuclear/cytosolic Nrf2 ratio and the mRNA expression of the downstream antioxidant enzymes, ϒ-glutamyl cysteine synthetase, glutathione peroxidase, glutathione reductase, and heme oxygenase-1, by activating the JNK/p38 pathway in Int-407 cells. Moreover, knockdown of DJ-1 also reversed caffeic acid-induced nuclear Nrf2 protein expression in a JNK/p38-dependent manner. Our results also indicated that treatment of Sprague–Dawley rats with caffeic acid prior to the administration of ketoprofen inhibited oxidative damage and reversed the inhibitory effects of ketoprofen on the antioxidant system and DJ-1 protein expression in the GI mucosa. Our observations suggest that DJ-1 plays an important role in caffeic acid-mediated protection against ketoprofen-induced oxidative damage in the GI mucosa.  相似文献   

3.
Iron nitrilotriacetate (Fe-NTA), a chief environmental pollutant, is known for its extensive toxic manifestations on renal system. In the present study, caffeic acid, one of the most frequently occurring phenolic acids in fruits, grains, and dietary supplements was evaluated for its shielding effect against the Fe-NTA-induced oxidative, inflammatory, and pathological damage in kidney. Fe-NTA was administered (9 mg Fe/kg body weight) intraperitoneally to the Wistar male rats on 20th day while caffeic acid was administered orally (20 and 40 mg/kg body weight) before administration of Fe-NTA. The intraperitoneal administration of Fe-NTA-enhanced lipid peroxidation, xanthine oxidase, and hydrogen peroxide generation with reduction in renal glutathione content, antioxidant enzymes, viz., catalase, glutathione peroxidase, and glutathione reductase. A sharp elevation in the levels of myloperoxidase, blood urea nitrogen (BUN), and serum creatinine has also been observed. Tumor promotion markers viz., ornithine decarboxylase (ODC) and [(3)H] thymidine incorporation into renal DNA were also significantly increased. Treatment of rats orally with caffeic acid (20 and 40 mg/kg body weight) resulted in a significant decrease in xanthine oxidase (P < 0.001), lipid peroxidation (P < 0.001), γ-glutamyl transpeptidase (P < 0.01), and H(2)O(2) (P < 0.01). There was significant recovery of renal glutathione content (P < 0.001) and antioxidant enzymes (P < 0.001). There was also a reversal in the enhancement of renal ODC activity, DNA synthesis, BUN, and serum creatinine (P < 0.001). All these changes were supported by histological observations. The results indicate that caffeic acid may be beneficial in ameliorating the Fe-NTA-induced oxidative damage and tumor promotion in the kidney of rats.  相似文献   

4.
The changes of glutathione S-transferase activity were investigated using rat brain astroglioma C6 cells that were synchronized at different phases of the cell cycle. The enzyme showed two significant activity peaks at G2 and G1 phases. Furthermore, when C6 glioma cells were exposed to a culture medium supplemented with specific glutathione S-transferase inhibitors, ethacrynic acid and caffeic acid, cell growth was remarkably suppressed. These results suggest that glutathione S-transferases may be closely related to the mechanism of cell proliferation.  相似文献   

5.
Caffeic acid is a selective inhibitor for leukotriene biosynthesis   总被引:16,自引:0,他引:16  
.eukotrienes are significantly involved in immunoregulation and in a variety of diseases, including asthma, inflammation and various allergic conditions. They are initially biosynthesized by 5-lipoxygenase from arachidonic acid, which can also be metabolized to prostaglandin endoperoxide by cyclooxygenase. The specific inhibitors for 5-lipoxygenase would be useful not only as tools for investigating the regulation mechanism of leukotriene biosynthesis, but also as drugs for clinical use. Although recently a few selective inhibitors have been reported, most of them are difficult to obtain, since they are new compounds. We found that caffeic acid, which is one of the most common reagents, is a selective inhibitor for 5-lipoxygenase and therefore for leukotriene biosynthesis. The inhibitory effect of its methyl ester on 5-lipoxygenase (ID50 = 4.8 X 10(-7) M) was stronger than that of caffeic acid itself (ID50 = 3.7 X 10(-6) M). Caffeic acid inhibited 5-lipoxygenase in a non-competitive manner. Caffeic acid and its methyl ester did not inhibit prostaglandin synthase activity at all, at least up to 5 X 10(-4) M, but rather stimulate at higher doses. The biosynthesis of leukotriene C4 and D4 in mouse mast tumor cells was also inhibited completely with 10(-4) caffeic acid. Besides, caffeic acid had little effect on arachidonic acid metabolism in platelet at less than 1 X 10(-5) M, but at higher doses it showed a definite inhibitory effect, i.e., thromboxane B2, HHT (12(S)-hydroxy-5,8,10-heptadecatetraenoic acid) and 12-HETE (12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid) syntheses were inhibited 33, 40 and 80% at 1 X 10(-4) M, respectively. Platelet aggregation induced by arachidonic acid was also inhibited by caffeic acid at high dose, while platelet aggregation induced by ADP is not influenced by caffeic acid at all. The observations on caffeic acid and its derivatives may contribute to leukotriene research.  相似文献   

6.
Nonvitamin phenolic compounds are ubiquitous in food plants and therefore potentially present in human plasma in a diet-dependent concentration. The aim of this study was to evaluate the ability of caffeic acid, a phenolic acid with antioxidant activity, to affect cellular response in U937 human monocytic cells to t-butyl hydroperoxide-induced oxidative stress. In our experimental conditions caffeic acid was incorporated into cells without any cytotoxic effect. Caffeic acid-treated cells showed an increased resistance to oxidative challenge, as revealed by an higher percent of survival and the maintenance of an higher proliferative capacity in respect to control cells. This effect seems to be due to the ability of caffeic acid to reduce glutathione depletion and to inhibit lipid peroxidation during tBOOH treatment. It can be concluded that caffeic acid exerts an antioxidant action inside the cell, responsible for the observed modulation of the cellular response to oxidative challenge. Due to its presence in the diet, therefore, caffeic acid may play a role in the modulation of oxidative processes in vivo.  相似文献   

7.
Dehydrodicaffeic acid dilactone (DDACD) was found in a cultured mushroom by screening for catechol-O-methyltransferase inhibitors. The enzyme which converts two molecules of caffeic acid to DDCAD has been extracted from the mushroom and purified and the enzyme reaction has been studied. It was markedly inhibited by reducing agents, such as NADPH, NADH, glutathione and ascorbic acid but stimulated by Fe3+, Fe2+, Co2+, Ni2+, Cu2+, Cu+ and Zn2+ ions. Sodium diethyldithiocarbamate and sodium cyanide known to be copper chelating agents inactivated the enzyme, but activity was restored by addition of Cu2+ or Cu+. Although the enzymic reaction did not occur under anaerobic conditions, 18O-oxygen was not incorporated into DDCAD. o-Diphenol oxidase catalyzed DDCAD formation from caffeic acid and the DDCAD-forming enzyme catalyzed the formation of DOPAchrome from DOPA. Thus, the DDCAD-forming enzyme is a type of o-diphenol oxidase. Peroxidase and hydrogen peroxide produced DDCAD from caffeic acid.

On the other hand, DDCAD was non-enzymatically synthesized from caffeic acid in the presence of CuCl2 in 64% yield. In both enzymic and non-enzymic syntheses, both (+)- DDCAD and (?)-DDCAD were produced.  相似文献   

8.
Reductive release of ferritin iron: a kinetic assay   总被引:1,自引:0,他引:1  
Ferritin iron release, a process of considerable interest in biology and medicine, occurs most readily in the presence of reducing agents. Here is described a kinetic assay for measuring the rate of ferritin iron removal promoted by various reductants. The new procedure uses ferrozine as a chromophoric, high-affinity chelator for the product, Fe(II). The initial rate of iron release is quantified by continuous spectrophotometric measurement of the Fe(ferrozine)2/3+ complex which absorbs maximally at 562 nm. The initial rate of iron mobilization is dependent on reductant concentration, but not on the concentration of the chelating agent, ferrozine. Saturation kinetics are observed for all reductants, including dihydroxyfumarate, cysteine, caffeic acid, ascorbate, and glutathione. Superoxide dismutase greatly inhibits ferritin iron release by ascorbate, but has little or no effect on the reducing action of dihydroxyfumarate, cysteine, caffeic acid, or glutathione. Ferritin iron removal by dihydroxyfumarate was inhibited by various metal ions. This new assay may be used for rapid screening of test compounds for treatment of iron overload and for investigation of the mechanistic aspects of ferritin iron reduction.  相似文献   

9.
A novel peroxidase that catalyses the transformation of caffeic acid and ferulic acid via oxidative coupling was purified from callus cultures of Bupleurum salicifolium petioles. The enzyme, which was purified over 2,900-fold, is a glycoprotein with a molecular weight of 38,000, determined by SDS/PAGE and gel filtration. The K(m) values obtained were 2.4x10(-4) M for caffeic and 2.6x10(-4) M for ferulic acid, while the K(m) values for H2O2 with caffeic acid was 4x10(-5) M and for H2O2 with ferulic acid was 4.8x10(-4) M. The purified peroxidase exhibits lower activity with typical peroxidase substrates (guaiacol and pyrogallol) than it does with caffeic and ferulic acids, but does not exhibit any activity with other phenylpropanoids tested (cinnamic acid, coumaric acid, and 3,4-dimethoxycinnamic acid).  相似文献   

10.
The effect of various flavonoids, lectins and phenyl βD‐glucoside on larval survival, weights and the activities of digestive (total serine protease and trypsin) and detoxifying (esterase and glutathione‐S‐transferase) enzymes of Spodoptera litura larvae at 7 days after treatment was studied through diet incorporation assay. Flavonoids (rutin, chlorogenic acid, quinic acid, caffeic acid, naringenin, quercitin, kaempferol, myricetin, catechin, and ferulic acid) were incorporated in artificial diet at 100, 500 and 1000 ppm, lectins: groundnut leaf lectin (GLL), concavalin A (ConA) and phenyl βD‐glucoside at 1, 2 and 5 μg/mL. Flavonoids such as rutin, quercitin and kaempferol at 1000 ppm were more toxic to S. litura larvae than quinic acid, caffeic acid, naringenin, myricetin, catechin, and ferulic acid. Larval growth and development were significantly reduced in S. litura larvae fed on a diet with GLL and ConA at 5 μg/mL compared to the larvae fed at 2 and 1 μg/mL concentrations. The larvae fed on flavonoid‐treated diets showed significant reduction in serine protease, trypsin and esterase activities. The flavonoids such as rutin, chlorogenic acid, quinic acid, naringenin, quercitin, kaempferol and myricetin, and lectins, GLL and ConA can be utilized in insect control programs.  相似文献   

11.
The rates of photo-oxidation of adenine in the presence of peroxydisulphate (PDS) have been determined by measuring the absorbance of adenine at 260.5 nm spectrophotometrically. The rates and the quantum yields (phi) of oxidation of adenine by sulphate radical anion (SO4(-)) have been determined in the presence of different concentrations of caffeic acid. Increase in the concentration of caffeic acid is found to decrease the rate of oxidation of adenine suggesting that caffeic acid acts as an efficient scavenger of SO4(-) and protects adenine from it; SO4(-) competes for adenine as well as for caffeic acid. From competition kinetics, the rate constant of SO4(-) with caffeic acid has been calculated to be 1.24 +/- 0.2 x 10(10) mol(-1)dm(3)s(-1). The quantum yields of photo-oxidation of adenine have been calculated from the rates of oxidation of adenine and the light intensity absorbed by PDS at 254 nm, the wavelength at which PDS is activated to SO4' -. The results of experimentally determined quantum yields (phi exptl) and the quantum yields calculated (phi cl) by assuming that caffeic acid acts only as a scavenger of SO4(-) radicals show that phi exptl values are lower than phi cl values. The phi prime values, which are experimentally found quantum yield values at each caffeic acid concentration and corrected for SO4(-) scavenging by caffeic acid, are also found to be greater than phi exptI values. These observations suggest that the adenine radicals are repaired by caffeic acid, in addition to scavenging of sulphate radical anions.  相似文献   

12.
A cell suspension culture, prepared fromPerilla frutescens var.crispa callus induced by Murashige and Skoog (1962) medium containing 2,4-dichlorophenoxyacetic acid (2,4-D, 1.0 ml/l) and kinetin (0.1 mg/l), contained caffeic acid derivatives as the phenolic components. Fresh and dry weights of the cells increased exponentially for about 11 days after transfer to a fresh medium. The contents of caffeic acid and protein also reached a maximum on the 11th day, but α-amino nitrogen phenylalanine and tyrosine continued to increase in amount until the 20th to 23rd day. Caffeic acid formation in the cells was increased by lowering the concentration of 2,4-D. The administration ofl-2-aminooxy-3-phenylpropionic acid (l-AOPP), 2-aminooxyacetic acid (AOA) andN-(phosphonomethyl)glycine (glyphosate) to the cells inhibited caffeic acid formation to a large extent. An 80% inhibition of caffeic acid formation was caused by 10−4Ml-AOPP whereas phenylalanine and tyrosine contents of the cells became 7.5 and 2.3 times higher at thisl-AOPP concentration than those in the control. An 85% inhibition of caffeic acid formation was achieved at 10−3M glyphosate concentration, while 10−3M AOA inhibited caffeic acid formation by 95% and also growth rate by 80%. The influence of inhibitors on caffeic acid formation is discussed in relation to the level of α-amino nitrogen, particularly aromatic amino acids, in the cell suspension cultures.  相似文献   

13.
Caffeic acid phenethyl ester has been shown to have anti-inflammatory and anti-cancer effects. We examined the effects of caffeic acid phenethyl ester on lipopolysaccharide-induced production of nitric oxide and prostaglandin E(2), and expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 macrophages. We also investigated the effects of caffeic acid phenethyl ester on lipopolysaccharide-induced septic shock in mice. Our results indicate that caffeic acid phenethyl ester inhibits lipopolysaccharide-induced nitric oxide and prostaglandin E(2) production in a concentration-dependent manner and inhibits inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cells, without significant cytotoxicity. To further examine the mechanism responsible for the inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by caffeic acid phenethyl ester, we examined the effect of caffeic acid phenethyl ester on lipopolysaccharide-induced nuclear factor-kappaB activation and the phosphorylation of mitogen-activated protein kinases. Caffeic acid phenethyl ester treatment significantly reduced nuclear factor-kappaB translocation and DNA-binding in lipopolysaccharide-stimulated RAW 264.7 cells. This effect was mediated through the inhibition of the degradation of inhibitor kappaB and by inhibition of both p38 mitogen-activated protein kinase and extracellular signal-regulated kinase phosphorylation, at least in part by inhibiting the generation of reactive oxygen species. Furthermore, caffeic acid phenethyl ester rescued C57BL/6 mice from lethal lipopolysaccharide-induced septic shock, while decreasing serum levels of tumor necrosis factor-alpha and interleukin-1beta. Collectively, these results suggest that caffeic acid phenethyl ester suppresses the induction of cytokines by lipopolysaccharide, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression, by blocking nuclear factor-kappaB and p38/ERK activation. These findings provide mechanistic insights into the anti-inflammatory and chemopreventive actions of caffeic acid phenethyl ester in macrophages.  相似文献   

14.
This study addresses the dynamic interactions among alpha-tocopherol, caffeic acid, and ascorbate in terms of a sequence of redox cycles aimed at accomplishing optimal synergistic antioxidant protection. Several experimental models were designed to examine these interactions: UV irradiation of alpha-tocopherol-containing sodium dodecyl sulfate micelles, one-electron oxidations catalyzed by the hypervalent state of myoglobin, ferrylmyoglobin, and autoxidation at appropriate pHs. These models were assessed by ultraviolet (UV) and electron paramagnetic resonance (EPR), entailing direct- and continuous-flow experiments, spectroscopy and by separation and identification of products by HPLC. The alpha-tocopheroxyl radical EPR signal generated by UV irradiation of alpha-tocopherol-containing micelles was suppressed by caffeic acid and ascorbate; in the former case, no other EPR signal was observed at pH 7.4, whereas in the latter case, the alpha-tocopheroxyl radical EPR signal was replaced by a doublet EPR spectrum corresponding to the ascorbyl radical (A*-). The potential interactions between caffeic acid and ascorbate were further analyzed by assessing, on the one hand, the ability of ascorbate to reduce the caffeic acid o-semiquinone (generated by oxidation of caffeic acid by ferrylmyoglobin) and, on the other hand, the ability of caffeic acid to reduce ascorbyl radical (generated by autoxidation or oxidation of ascorbate by ferrylmyoglobin). The data presented indicate that the reductive decay of ascorbyl radical (A*-) and caffeic acid o-semiquinone (Caf-O*) can be accomplished by caffeic acid (Caf-OH) and ascorbate (AH-), respectively, thus pointing to the reversibility of the reaction Caf-O* + AH- <--> Caf-OH + A*-. Continuous-flow EPR measurements of mixtures containing ferrylmyoglobin, alpha-tocopherol-containing micelles, caffeic acid, and ascorbate revealed that ascorbate is the ultimate electron donor in the sequence encompassing transfer of the radical character from the micellar phase to the phase. In independent experiments, the effects of caffeic acid and ascorbate on the oxidation of two low-density lipoprotein (LDL) populations, control and alpha-tocopherol-enriched, were studied and results indicated that alpha-tocopherol, caffeic acid, and ascorbate acted synergistically to afford optimal protection of LDL against oxidation. These results are analyzed for each individual antioxidant in terms of three domains: its localization and that of the antioxidant-derived radical, its reduction potential, and the predominant decay pathways for the antioxidant-derived radical, that exert kinetic control on the process.  相似文献   

15.
In the present study, we investigated the inhibitory effect of three catechol-containing coffee polyphenols, chlorogenic acid, caffeic acid and caffeic acid phenethyl ester (CAPE), on the O-methylation of 2- and 4-hydroxyestradiol (2-OH-E2 and 4-OH-E2, respectively) catalyzed by the cytosolic catechol-O-methyltransferase (COMT) isolated from human liver and placenta. When human liver COMT was used as the enzyme, chlorogenic acid and caffeic acid each inhibited the O-methylation of 2-OH-E2 in a concentration-dependent manner, with IC50 values of 1.3–1.4 and 6.3–12.5 μM, respectively, and they also inhibited the O-methylation of 4-OH-E2, with IC50 values of 0.7–0.8 and 1.3–3.1 μM, respectively. Similar inhibition pattern was seen with human placental COMT preparation. CAPE had a comparable effect as caffeic acid for inhibiting the O-methylation of 2-OH-E2, but it exerted a weaker inhibition of the O-methylation of 4-OH-E2. Enzyme kinetic analyses showed that chlorogenic acid and caffeic acid inhibited the human liver and placental COMT-mediated O-methylation of catechol estrogens with a mixed mechanism of inhibition (competitive plus noncompetitive). Computational molecular modeling analysis showed that chlorogenic acid and caffeic acid can bind to human soluble COMT at the active site in a similar manner as the catechol estrogen substrates. Moreover, the binding energy values of these two coffee polyphenols are lower than that of catechol estrogens, which means that coffee polyphenols have higher binding affinity for the enzyme than the natural substrates. This computational finding agreed perfectly with our biochemical data.  相似文献   

16.
Koo KA  Kim SH  Oh TH  Kim YC 《Life sciences》2006,79(7):709-716
We have previously reported that acteoside isolated from the leaves of Callicarpa dichotoma has significant neuroprotective activity against glutamate-induced neurotoxicity in primary cultured rat cortical cells. To determine the essential structural moiety within this phenylethanoid glycoside needed to exert neuroprotective activity, acteoside was hydrolyzed with acid into its aglycones, caffeic acid and 3',4'-dihydroxylphenylethanol. Caffeic acid and 3',4'-dihydroxylphenylethanol also showed significant neuroprotective activities. Acteoside and its aglycones inhibited glutamate-induced intracellular Ca2+ influx resulting in overproduction of nitric oxide and reduced the formation of reactive oxygen species. These compounds preserved the mitochondrial membrane potential and the activities of antioxidative enzymes, such as superoxide dismutase, glutathione reductase and glutathione peroxidase reduced by glutamate. It was followed by the preservation of the level of glutathione and finally the inhibition of membrane lipid peroxidation.  相似文献   

17.
A series of amides of caffeic acid were synthesized and evaluated for their anti-platelet and anti-oxidative activities. N-(2-Bromo-phenyl)-3-(3,4-dihydroxy-phenyl)-acrylamide (12) and N-(3-Bromo-phenyl)-3-(3,4-dihydroxy-phenyl)-acrylamide (13) exhibited potent inhibitory activity (IC(50)=5.8 and 6.7 microM, respectively) against arachidonic acid-induced (AA) platelet aggregation, comparable with invalid caffeic acid. Most of the synthesized caffeic acid anilides exhibited the promising anti-platelet aggregation in AA-induced assay and anti-oxidative activities. This study also exhibited that caffeic anilides displayed more potent anti-oxidative activity in the radical scavenging activity assay than trolox and vitamin E.  相似文献   

18.
Caffeic acid is a valuable aromatic compound that possesses many important pharmacological activities. In structure, caffeic acid belongs to the hydroxycinnamic acid family and can be biosynthesized from the aromatic amino acid tyrosine. In the present paper, the caffeic acid biosynthesis pathway was reconstituted in engineered Escherichia coli to produce caffeic acid from simple biomass sugar glucose and xylose. Different engineering approaches were utilized to optimize the production. Specifically, two parallel biosynthesis routes leading from tyrosine to caffeic acid were studied. The copy number of the intermediate biosynthesis genes was varied to find appropriate gene doses for caffeic acid biosynthesis. Three different media, including a MOPS medium, a synthetic medium, and a rich medium, were also examined to improve the production. The highest specific caffeic acid production achieved was 38 mg/L/OD. Lastly, cultivation of engineered E. coli in a bioreactor resulted in a production of 106 mg/L caffeic acid after 4 days.  相似文献   

19.
Female mice of hybrid strain B6C3F1, 8-10 weeks old, were fed on powdered food with or without 2% caffeic acid. After one week on these diets, some of each group of mice were injected i.p., with 7,12-dimethyl benz[a]anthracene (25 mg/kg) dissolved in dimethyl disulfoxide. In the course of separate experiments, bone-marrow samples were taken at various intervals after injection for analysis in the micronucleus assay. From each mouse 500 polychromatic erythrocytes were scored to determine the frequency with micronuclei. At the time at which the maximum response was observed, which differed between experiments, the frequency of micronuclei induced by DMBA was reduced by 50% by the presence of caffeic acid. Caffeic acid (3,4-dihydroxy cinnamic acid) is widely distributed in plant materials in both free and combined forms and, as such, is a component of the human diet. Our results suggest that caffeic acid provides significant protection against the genotoxicity of DMBA.  相似文献   

20.
Enzymatic O-methylation, catalyzed by S-adenosyl-L-methionine (SAM)-dependent O-methyltranferases (OMTs), is a ubiquitous reaction, occurring in almost all living organisms. Plant OMTs are involved in the methylation of secondary metabolites, including phenylpropanoid and flavonoid compounds. Here, we used RT-PCR to isolate and characterizePOMT-2 fromPopulus deltoides. This OMT comprises a 1095-b open reading frame that encodes a 39.7-kDa protein. BLAST results showed 87% identities to an OMT fromPrunus dulcis and a caffeic acid OMT fromRosa chinensis. POMT-2 was expressed inEscherichia coli as a glutathione S-transferase fusion protein, and was purified by affinity chromatography. POMT-2 transferred a methyl group of SAM to caffeic acid and 6,7-dihydroxyflavone, but showed low activities toward quercetin and kaempferol. According to itsin vitro substrate preference and composition of phenolic compounds in poplar, thein vivo function of POMT-2 is probably the methylation of caffeic acid and an involvement in lignin biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号