首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteome analysis of grain filling and seed maturation in barley   总被引:18,自引:0,他引:18       下载免费PDF全文
In monocotyledonous plants, the process of seed development involves the deposition of reserves in the starchy endosperm and development of the embryo and aleurone layer. The final stages of seed development are accompanied by an increase in desiccation tolerance and drying out of the mature seed. We have used two-dimensional gel electrophoresis for a time-resolved study of the changes in proteins that occur during seed development in barley (Hordeum vulgare). About 1,000 low-salt extractable protein spots could be resolved on the two-dimensional gels. Protein spots were divided into six categories according to the timing of appearance or disappearance during the 5-week period of comparison. Nineteen different proteins or protein fragments in 36 selected spots were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry (MS) or nano-electrospray tandem MS/MS. Some proteins were present throughout development (for example, cytosolic malate dehydrogenase), whereas others were associated with the early grain filling (ascorbate peroxidase) or desiccation (Cor14b) stages. Most noticeably, the development process is characterized by an accumulation of low-M(r) alpha-amylase/trypsin inhibitors, serine protease inhibitors, and enzymes involved in protection against oxidative stress. We present examples of proteins not previously experimentally observed, differential extractability of thiol-bound proteins, and possible allele-specific spot variation. Our results both confirm and expand on knowledge gained from previous analyses of individual proteins involved in grain filling and maturation.  相似文献   

2.
Circumstantial evidence from field experiments at Rothamsted suggested that effects of powdery mildew on grain filling in spring barley may be determined partly by temperature during the grain-filling period. An experiment was, therefore, done which compared the effects of fungicides applied to control powdery mildew on grain filling in early- and late-sown spring barley plants kept either out-of-doors throughout their growth (‘cool’ environment) or under the same conditions until the start of grain filling and then transferred to a heated glasshouse (‘warm’ environment) until harvested. Fungicides that controlled mildew increased the total grain yield of the late-sown barley more than that of the early-sown and much more in the warm environment than in the cool. On average, the effect of the fungicides in the cool environment was to increase grain yield by 17·7%. Small increases in numbers of grains/ear (+ 3·4%) and thousand-grain weight (TGW) (+ 2·3%) contributed to this increase but it could be attributed principally to an average increase in numbers of ears/plant of 12·4%. Contrastingly, fungicides increased average grain yield in the warm environment by 58·2%. Effects of the fungicides on numbers of ears/plant (+ 27·8%) and on numbers of grains/ear (+ 4·5%) were not significantly different to those in the cool environment, and the much greater responses in the warm than in the cool environment could be attributed mostly to much larger effects on grain size (+ 19·2%) The greater benefits of the fungicides and, by implication, the greater damage done by powdery mildew in the warm than in the cool environment cannot, unequivocally, be attributed to differences in temperature during grain-filling because the two environments clearly differed in other ways and especially in light intensity. Nevertheless, the results obtained do illustrate the potential risks involved in using data obtained under one set of circumstances to predict what will happen in another, especially when environments differ as greatly as glasshouses and fields.  相似文献   

3.
Leaf nitrogen remobilisation for plant development and grain filling   总被引:1,自引:0,他引:1  
A major challenge of modern agriculture is to reduce the excessive input of fertilisers and, at the same time, to improve grain quality without affecting yield. One way to achieve this goal is to improve plant nitrogen economy through manipulating nitrogen recycling, and especially nitrogen remobilisation, from senescing plant organs. In this review, the contribution of nitrogen remobilisation efficiency (NRE) to global nitrogen use efficiency (NUE), and tools dedicated to the determination of NRE are described. An overall examination of the physiological, metabolic and genetic aspects of nitrogen remobilisation is presented.  相似文献   

4.
Salinity had a varying effect on stomatal frequency, size and pore in barley (Hordeum vulgare L.). This variation in stomatal frequency, size and pore under salinity offers a scope of selecting cultivars with lesser increase in stomatal number to avoid excessive loss of water due to transpiration without effecting photosynthetic efficiency.  相似文献   

5.
Effect of soil and water salinity on tomato growth   总被引:2,自引:0,他引:2  
The yield of tomatoes for processing (Lycopersicon esculentum var. VF145 B. 7879) grown in artificially salinized plots, was reduced by 10% for every 1.5 mmhos/cm increase in ECe above 2.0 mmhos/cm. Yield reduction was the same for equal mean soil salinities regardless of leaching and the rate of salt accumulation in the soil. Total soluble solids content increased with increasing salinity to offset, to a large extent, the yield reduction. Reduction in water uptake, as a result of an increase in soil salinity was directly related to fruit yield reduction, but not to stover yield which was not affected by salinity. The salt tolerance during germination was similar to subsequent growth in the salinity range of this experiment.Contribution from the Agricultural Research Organization. The Volcani Center, Bet Dagan, Israel 1972. Series, No. 2225-E.Contribution from the Agricultural Research Organization. The Volcani Center, Bet Dagan, Israel 1972. Series, No. 2225-E.  相似文献   

6.
In 1990 and 1991 grain samples of spring barley were obtained from plots in which fungal diseases were controlled until ear emergence using fungicide sprays, and from comparable plots which had received no fungicide applications. The grain was stored at 10oC, and tested for germination at intervals during storage. Grain from plots treated with fungicide consistently exhibited more dormancy than grain from untreated plots. In 1992, grain development was monitored from anthesis to harvest-ripeness in treated and untreated plots of cvs Blenheim, Camargue and Tyne. In cvs Blenheim and Camargue, grains in fungicide-treated plots had a greater dry weight at harvest-ripeness, and dehydrated later in development than grains in untreated plots. Neither of these differences was observed in cv. Tyne. Possible interpretations of the effects of fungicide treatment of the parent plant on the physiology of the grain are discussed.  相似文献   

7.
The reported inheritance pattern of the seg1 shrunken endosperm mutant of barley (Hordeum vulgare L. cv Betzes) suggests that some defective process in the maternal plant tissues, and not in the endosperm, prevents normal grain filling in the mutant. To identify the physiological mechanism of the mutation, we compared growth, carbon exchange, and assimilate transport of Betzes and seg1 plants. Betzes and seg1 plants did not differ in mean relative growth rate, mean net assimilation rate, or carbon exchange rate. The rate and duration of grain growth of seg1 was lower than Betzes on intact plants and on detached, cultured spikes. Increasing the supply of sucrose in culture media up to 300 mm sucrose did not eliminate differences between normal and mutant grain growth. Translocation of 14C-labeled assimilates into seg1 grains ceased by 21 days after anthesis, and assimilates were diverted to lower plant parts. In contrast, assimilates were still entering Betzes grains at 29 days after anthesis. Evidence suggests that some maternal spike or grain tissue is affected by the mutation after the onset of grain filling. Identification of the specific seg1 defect may provide information about the cessation of normal grain filling.  相似文献   

8.
The accumulation of salt-soluble proteins in the endosperm of developing barley (Hordeum vulgare L.) grains was examined. Detached spikes of barley were cultured at different levels of nitrogen nutrition and pulse-labeled with [14C] sucrose at specific times after anthesis. Proteins were extracted from isolated endosperms and separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and crossed immunoelectrophoresis. Fluorography revealed an early, middle and late synthesis of specific proteins during grain filling. Synthesis of proteins appearing at the later stages responded to increased nitrogen nutrition. Two major components, -amylase and protein Z in particular, had a synthesis profile almost identical to that of the endosperm storage protein, hordein.Abbreviations CIE Crossed immunoelectrophoresis - SDSPAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis  相似文献   

9.
We have studied the effects of six high-lysine barley mutations (Risø mutants 1508 and 56, Notch 1 and 2, lys 95 and 449) on the protein fractions of the grain. All mutants had a decreased relative and total amount of the lysine-poor hordein fraction, but only in Risø 1508 and 56 was the polypeptide composition of this fraction greatly affected. In all the mutants there were increases in the lysine-rich glutelin proteins and in nonprotein N while in Risø 1508 and the Notch mutants the total amount of salt-soluble proteins was also increased and their relative polypeptide composition substantially altered.This work was supported by EEC Contract No. 473 under the common program on plant protein improvement.  相似文献   

10.
11.
12.
13.
Summary The interaction of exchangeable soil K with cultivars resulted in differences in grain production by five barley cultivars. The cultivars differed in the amount of exchangeable soil K required to produce maximum yield. Bonanza attained its maximum yield at 183 kg K2O ha–1, but Galt did not reach its maximum yield until a high level of exchangeable soil K was reached (252 kg K2O ha–1). The other cultivars were within this range. The cultivars also differed in their yield response to applied K fertilizer. Under conditions of growth-limiting K supply, Galt and Gateway were slightly more responsive to the addition of K fertilizer than were Centennial and Conquest, and much more responsive than Bonanza. The interactions of exchangeable soil K and soil pH or soil NO3–N and soil pH with cultivars indicated differences in acid tolerance of the cultivars. Galt was more pH sensitive than Bonanza.  相似文献   

14.
Tubulins, as major components involved in the organization of microtubules, play an important role in plant development. We describe here the expression profiles of all known α-tubulin (TUA), β-tubulin (TUB) and γ-tubulin (TUG) genes of barley ( Hordeum vulgare ), involving eight newly identified TUB sequences, five established TUA genes and one TUG gene. Macroarray and Northern blot-based expression patterns in the pericarp, endosperm and embryo were obtained over the course of the development of the grain between anthesis and maturation. These revealed that the various tubulin genes differed in their levels of expression, and to some extent were tissue specific. Two expression peaks were detected in the developing endosperm. The first and more prominent peak, at 2 days after flowering, included expression of almost all the tubulin genes. These tubulins are thought to be involved in mitoses during the formation of the syncytial endosperm. The second, less pronounced but more extended, peak included only some of the tubulin genes ( HvTUA3 , HvTUB1 and HvTUG ) and might be associated with the cell wall organization in aleurone and starchy endosperm. The HvTUA5 gene is expressed only in embryo of the developing grain and may be associated with shoot establishment. The expression profiles of the tubulin folding cofactors HvTFC A and HvTFC B as well as small G-protein HvArl2 genes were almost perfectly correlated with the global levels of tubulin mRNA, implying that they have a role in the control of the polymerization of α/β-tubulin heterodimers.  相似文献   

15.
Barley varieties are known to differ in the extent of Na+ andCl accumulation in leaves when grown in saline soil orhydroponic culture. In particular, the cv. Chevron accumulatesmore Na+ than the more salt-tolerant cv. CM67, and has lowerleaf K+ concentrations. When salt was applied as a spray tothe leaves, CM67 accumulated more Na+ than Chevron, and theselection Sinis 27 (from a landrace collected on the Sinis Peninsulaof Sardinia) accumulated more Na+ than Sinis 28. In some casesleaf K+ concentrations decreased in response to high concentrationsof salt sprayed on to the leaves. Accumulation of Na+ was greaterin the 4th leaf than in the flag leaf. Added CaCI2 had oppositeeffects when added to the salt applied to the soil or to thesaline spray. In the soil, CaCI2 reduced Na+ uptake; appliedto the leaf it increased Na+ uptake. Pre-wetting the leavesbefore the salt spray, or washing the leaves with non-salinewater 1 h after the salt spray, reduced the uptake of Na+ andCl. It is clear that tolerance to salt applied as saltspray or in the soil are different characteristics. Key words: Barley, salt, foliar uptake, calcium  相似文献   

16.
Scutella separated from grains of Himalaya barley after germination for 3 days rapidly took up l-leucine from aerated incubation media; with 1 millimolar leucine the rate varied between 4 and 14 micromoles per gram per hour and the pH optimum was at 3.5 to 5, both depending on buffer composition and prewashing time. The rate of the uptake increased with increasing concentration of leucine in a complex manner, which could be interpreted as multiphasic kinetics with apparent K(m) values of 3.4 and 15.5 millimolar below and above 3 millimolar leucine, respectively. The uptake took place against a concentration difference (highest estimated ratio 270: 1) and was strongly inhibited by dinitrophenol. Uptake was apparently due to active transport requiring metabolic energy.The development of the uptake activity during germination was studied using Pirkka barley. A low activity was present in the scutella of ungerminated grains. It began to increase after 6 hours imbibition, and the increase was biphasic, the major changes occurring during days 0 to 3 and 4 to 6. The total increase was about 20-fold.The regulation of the development was studied by allowing separated embryos to germinate on agar gel. The increase of uptake activity was strongly inhibited by inhibitors of RNA or protein synthesis. Increase did not require the presence of the embryo proper, and was not affected by gibberellic or abscisic acid. Removal of the endosperm greatly accelerated the increase of uptake activity, and the presence of 5 or 20 millimolar glutamine counteracted the removal of the endosperm. The results suggest that the availability of glutamine or amino acids in general in the endosperm may regulate the development or the activity of the transport system.  相似文献   

17.
The effect of preconditioning to NaCl salinity (0 to 135 mmol L-1) on the subsequent response of barley (Hordeum vulgare L.) to two days of low (5°C) temperature shock (LTS) was investigated. Both salinity and LTS reduced the final growth of barley tops and roots. The effect of LTS on growth of tops and roots depended on the level of salinity stress imposed. At salinity level of 45 mmol L-1, for example, exposing the plants to LTS reduced top growth by an additional 34%; at 135 mmol L-1 salinity, however, LTS reduced the top growth by only 2%. Salinity increased the concentration of Na, Cl, total P, PO4, and Zn, reduced the concentration of K, Ca, total N, NO3, and SO4, but did not affect the concentration of total S in the barley tops. LTS increased the concentration of Ca and Zn in the tops; the concentrations of other elements (cations and anions) were not changed by the temperature treatment. In the tops of the control plants, NO3, PO4, and SO4 accounted for 15%, 72% and 93% of the total N, P, and S, respectively. In the plants grown at 135 mmol L-1 NaCl, however, the above values were 8%, 84%, and 70%, respectively, which indicates that salinity had altered the incorporation of N, P, and S into organic compounds. We suggest that salinity and low temperature affect growth and nutrient uptake and incorporation into organic matter by different mechanisms. Although barley subjected to low salinity becomes more sensitive to subsequent low temperature stress, preconditioning of barley to higher salinity stress seems to reduce the plant's sensitivity to subsequent low temperature.  相似文献   

18.
The water potential of wheat and barley leaves considerably decreased with the decrease of the soil moisture percentage, with the increase of the eleotrical conductivity of the soil solution and with the increase in the exchangeable sodium percentage level. Also the leaf insertion level affected the values of water potential and the most negative values were found in the top leaves.  相似文献   

19.
Summary In a pot culture experiment on a sierozem sandy soil (pH 8.2) rates of added B at 3 ppm although decreased root yield significantly but shoot and grain yield was unaffected even at 6 ppm added B, even though shoot B concentration was as high as 360 ppm and Ca/B ratio as low as 11. At 6 ppm applied B, shoot yield was increased by 18.5 per cent, whereas grain yield was at par with control. The results suggested that Ca/B ratio in barley straw was not a reliable index for determing the magnitude of B problem in the soil.  相似文献   

20.
The effects of four fungicide treatments for the control of mildew on spring barley were assessed in three field experiments, one in each of the years 1981, 1982, 1983. The fungicide treatments (+/ - triadimenol seed treatment and +/ - triadimefon foliar spray applied during early booting) were chosen to control mildew, and hence affect yield determining processes, at different times in the life of the crop. Two of the experiments also tested different nitrogen amounts and the third tested four varieties differing in their degree of mildew resistance. Mildew appeared too late to affect the production and survival of spikelets and shoots, but reduced average grain weight by reducing the rate of grain growth. Grains in the upper part of the ear had a considerably lower growth rate and final weight than grains in central and basal positions but there was no evidence that the effects of mildew on grain size depended upon grain position within the ear. Mildew incidence increased with increasing nitrogen and varietal susceptibility but there were few significant interactions between these factors and fungicide treatment for grain yield. The degree of mildew control achieved by the seed treatment varied with barley variety. Use of the two successive fungicide treatments did not yield more barley than use of either alone. Amongst varieties, grain positions within the ear and fungicide treatments there was a close correlation between rate of grain growth and final grain weight. Duration of grain growth was not related to rate of grain growth or final grain weight but was inversely correlated with mean temperature during the period of rapid grain growth. The temperature sums during the period of rapid grain growth were similar for the three years and it is suggested that a more precise knowledge of the relationships between mildew incidence, varietal susceptibility and rate of grain growth may enable more accurate predictions to be made about likely yield responses to fungicide treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号