首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G蛋白βγ亚单位介导的信号转导途径   总被引:3,自引:0,他引:3  
跨膜信息传递有关的G蛋白由α、β和γ亚单位所组成,受体激动后,引起GTP与α亚单位结合,导致Gα与Gβγ分离。近年来发现Gα、受体本射和许多效应分子如K^+通道、Ga^2+通道、磷脂酶C-β、腺苷酸环化酶、酷氨酸、MAPK和受体激酶等都受Gβγ的调节,Gβγ同Gα一样均可引起效应蛋白的激活,在细胞信号转导中起同样重要作用,共同介导一系列的生物学效应。  相似文献   

2.
The Ca2+ pump of the plasma membrane.   总被引:21,自引:0,他引:21  
  相似文献   

3.
The Ca2+ pump of the plasma membrane of human red blood cells is associated with the activity of a (Ca2+ + Mg2+)-ATPase. Both the ATPase and the pump are stimulated above basal activities by calmodulin, an ubiquitous Ca2+-binding protein. Calmodulin isolated from human red blood cells was shown to be equipotent and equieffective with that isolated from beef brain. Half-maximal activation of ATPase (isolated red blood cell membranes, 37 C) and transport (inside-out red blood cell membrane vesicles, 25 C) were obtained with 2.5 and 4.4 nM calmodulin, respectively. Ca2+ dependence of Ca2+ transport was measured in the absence and in the presence of 50 nM calmodulin. At all Ca2+ concentrations above 2 X 10(-7) M Ca2+, the rate of transport was greater in the presence of calmodulin. The results implicate calmodulin in the regulation of the plasma membrane Ca2+ pump, but the mechanism(s) remain to be elucidated.  相似文献   

4.
The Neurospora plasma membrane Ca2+ pump   总被引:3,自引:0,他引:3  
Plasma membrane vesicles isolated from the eukaryotic microorganism Neurospora crassa by the concanavalin A method catalyze Mg2+-ATP dependent 45Ca2+ accumulation. Since the ATP-responsive vesicles are functionally inverted, the Ca2+ transport system presumably operates as a Ca2+ exit pump in the intact cell. The mechanism of the Ca2+ pump system involves two components: 1) an electrogenic, proton-translocating ATPase (EC 3.6.1.3), which utilizes the chemical energy of ATP hydrolysis to generate a transmembrane electrical potential and pH gradient, and 2) a Ca2+/H+ antiporter, which utilizes the transmembrane pH gradient to energize the active transport of Ca2+. Evidence for this mechanism is presented and the possible implications of these findings for the mechanisms of Ca2+ pumps in other cells are discussed.  相似文献   

5.
Summary The relative contributions of the Na+/Ca2+ exchange and the plasma membrane Ca2+ pump to active Ca2+ efflux from stimulated rat pancreatic acini were studied. Na+ gradients across the plasma membrane were manipulated by loading the cells with Na+ or suspending the cells in Na+-free media. The rates of Ca2+ efflux were estimated from measurements of [Ca2+] i using the Ca2+-sensitive fluorescent dye Fura 2 and45Ca efflux. During the first 3 min of cell stimulation, the pattern of Ca2+ efflux is described by a single exponential function under control, Na+-loaded, and Na+-depleted conditions. Manipulation of Na+ gradients had no effect on the hormone-induced increase in [Ca2+] i . The results indicate that Ca2+ efflux from stimulated pancreatic acinar cells is mediated by the plasma membrane Ca2+ pump. The effects of several cations, which were used to substitute for Na+, on cellular activity were also studied. Choline+ and tetramethylammonium+ (TMA+) released Ca2+ from intracellular stores of pancreatic acinar, gastric parietal and peptic cells. These cations also stimulated enzyme and acid secretion from the cells. All effects of these cations were blocked by atropine. Measurements of cholecystokinin-octapeptide (CCK-OP)-stimulated amylase release from pancreatic acini, suspended in Na+, TMA+, choline+, or N-methyl-d-glucamine+ (NMG+) media containing atropine, were used to evaluate the effect of the cations on cellular function. NMG+, choline+, and TMA+ inhibited amylase release by 55, 40 and 14%, respectively. NMG+ also increased the Ca2+ permeability of the plasma membrane. Thus, to study Na+ dependency of cellular function, TMA+ is the preferred cation to substitute for Na+. The stimulatory effect of TMA+ can be blocked by atropine.  相似文献   

6.
A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.  相似文献   

7.
Several mechanisms couple heterotrimeric guanine nucleotide-binding proteins (G proteins) to cellular effectors. Although alpha subunits of G proteins (Galpha) were the first recognized mediators of receptor-effector coupling, Gbetagamma regulation of effectors is now well known. Five Gbeta and 12 Ggamma subunit genes have been identified, suggesting through their diversity that specific subunits couple selectively to effectors. The molecular determinants of Gbetagamma-effector coupling, however, are not well understood, and most studies of G protein-effector coupling do not support selectivity of Gbetagamma action. To explore this issue further, we have introduced recombinant Gbetagamma complexes into avian sensory neurons and measured the inhibition of Ca(2+) currents mediated by an endogenous phospholipase Cbeta- (PLCbeta) and protein kinase C-dependent pathway. Activities of Gbetagamma in the native cells were compared with enzyme assays performed in vitro. We report a surprising selective activation of the PLCbeta pathway by Gbetagamma complexes containing beta(1) subunits, whereas beta(2)-containing complexes produced no activation. In contrast, when assayed in vitro, PLCbeta and type II adenylyl cyclase did not discriminate among these same Gbetagamma complexes, suggesting the possibility that additional cellular determinants confer specificity in vivo.  相似文献   

8.
High threshold L-type Ca2+ channels of skeletal muscle are thought to consist of a complex of alpha 1, alpha 2 delta, beta, and gamma subunits. Expression of the cloned alpha 1 subunit from skeletal and cardiac muscle has established that this protein is the dihydropyridine-sensitive ion-conducting subunit. However, the kinetics of the skeletal muscle alpha 1 alone expressed in mouse L-cells were abnormally slow and were accelerated to within the normal range by coexpression with the skeletal muscle beta subunit. The kinetics of cardiac muscle alpha 1 were also slowed but to a lesser extent and were not altered by coexpression with skeletal muscle alpha 2. We show here that coexpression of the skeletal muscle beta subunit with the cardiac alpha 1 subunit in Xenopus laevis oocytes produced: 1) an increase in the peak voltage-sensitive current, 2) a shift of the peak current-voltage relationship to more hyperpolarized potentials, and 3) an increase in the rate of activation. Coexpression of the skeletal muscle gamma subunit did not have a significant effect on currents elicited by alpha 1. However, when gamma was coexpressed with beta and alpha 1, both peak currents and rates of activation at more negative potentials were increased. These results indicate that rather than simply amplifying expression of alpha 1, heterologous skeletal muscle beta and gamma subunits can modulate the biophysical properties of cardiac alpha 1.  相似文献   

9.
Dimerization (oligomerization) of the plasma membrane Ca2+ pump increases its activity (Kosk-Kosicka, D., Bzdega, T., and Wawrzynow, A. (1989) J. Biol. Chem. 264, 19495-19499). Fluorescence titration on preparations of the purified eosin-labeled human erythrocyte ATPase has been used to monitor the oligomerization process. Calmodulin inhibits oligomerization, although it can bind to the oligomerized enzyme. Synthetic peptides corresponding to the calmodulin-binding domain of the pump stimulate its ATPase activity, indicating the formation of heterooligomers of the peptides with the pump. The oligomerization is prevented by the preincubation of the ATPase with calmodulin. Polyclonal antibodies against the synthetic calmodulin-binding domain inhibit its basal and its calmodulin-stimulated ATPase activity and prevent the formation of the oligomers. ATPase preparations truncated at the COOH terminus with calpain to a fragment of 124 kDa which does not contain the calmodulin-binding domain fail to oligomerize with the intact ATPase. The results show that the calmodulin-binding domain mediates the oligomerization of the Ca2+ pump.  相似文献   

10.
Caloxin: a novel plasma membrane Ca2+ pump inhibitor   总被引:1,自引:0,他引:1  
Plasma membrane (PM) Ca2+ pump is aCa2+-Mg2+-ATPase that expels Ca2+from cells to help them maintain low concentrations of cytosolic Ca2+. There are no known extracellularly acting PMCa2+ pump inhibitors, as digoxin and ouabain are forNa+ pump. In analogy with digoxin, we define caloxins asextracellular PM Ca2+ pump inhibitors and describe caloxin2A1. Caloxin 2A1 is a peptide obtained by screening a random peptidephage display library for binding to the second extracellular domain(residues 401-413) sequence of PM Ca2+ pump isoform1b. Caloxin 2A1 inhibits Ca2+-Mg2+-ATPase inhuman erythrocyte leaky ghosts, but it does not affect basalMg2+-ATPase or Na+-K+-ATPase in theghosts or Ca2+-Mg2+-ATPase in the skeletalmuscle sarcoplasmic reticulum. Caloxin 2A1 also inhibitsCa2+-dependent formation of the 140-kDa acid-stableacylphosphate, which is a partial reaction of this enzyme. Consistentwith inhibition of the PM Ca2+ pump in vascularendothelium, caloxin 2A1 produces an endothelium-dependent relaxationthat is reversed byNG-nitro-L-arginine methyl ester.Thus caloxin 2A1 is a novel PM Ca2+ pump inhibitor selectedfor binding to an extracellular domain.

  相似文献   

11.
In vascular endothelial cells, depletion of intracellularCa2+ stores elicited capacitativeCa2+ entry (CCE) that resulted inbiphasic changes of intracellular Ca2+ concentration([Ca2+]i)with a rapid initial peak of[Ca2+]ifollowed by a gradual decrease to a sustained plateau level. Weinvestigated the rates of Ca2+entry, removal, and sequestration during activation of CCE and theirrespective contributions to the biphasic changes of[Ca2+]i.Ca2+ buffering by mitochondria,removal byNa+/Ca2+exchange, and a fixed electrical driving force forCa2+ (voltage-clamp experiments)had little effect on the CCE signal. The rates of entry ofMn2+ andBa2+, used as unidirectionalsubstitutes for Ca2+ entry throughthe CCE pathway, were constant and did not follow the concomitantchanges of[Ca2+]i.Pharmacological inhibition of the plasma membraneCa2+ pump, however, abolished thesecondary decay phase of the CCE transient. The disparity between thebiphasic changes of[Ca2+]iand the constant rate of Ca2+entry during CCE was the result of a delayed,Ca2+-dependent activation of thepump. These results suggest an important modulatory role of the plasmamembrane Ca2+ pump in the netcellular gain of Ca2+ during CCE.

  相似文献   

12.
The plasma membrane Ca(2+) ATPase (PMCA) is responsible for maintaining basal intracellular Ca(2+) concentration ([Ca(2+)](i)) and returning small increases in [Ca(2+)](i) back to resting levels. The carboxyl terminus of some PMCA splice variants bind Homer proteins; how binding affects PMCA function is unknown. Here, we examined the effects of altered expression of Homer proteins on PMCA-mediated Ca(2+) clearance from rat hippocampal neurons in culture. The kinetics of PMCA-mediated recovery from the [Ca(2+)](i) increase evoked by a brief train of action potentials was determined in the soma of single neurons using indo-1-based photometry. Exogenous expression of Homer 1a, Homer 1c or Homer 2a did not affect PMCA function. However, shRNA mediated knockdown of Homer 1 slowed PMCA mediated Ca(2+) clearance by 28% relative to cells expressing non-silencing shRNA. The slowed recovery rate in cells expressing Homer 1 shRNA was reversed by expression of a short Homer 2 truncation mutant. These results indicate that constitutively expressed Homer proteins tonically stimulate PMCA function in hippocampal neurons. We propose a model in which binding of short or long Homer proteins to the carboxyl terminus of the PMCA stimulates Ca(2+) clearance rate. PMCA-mediated Ca(2+) clearance may be stimulated following incorporation of the pump into Homer organized signaling domains and following induction of the Homer 1a immediate early gene.  相似文献   

13.
The liver plasma membrane Ca2+ pump: hormonal sensitivity   总被引:1,自引:0,他引:1  
S Lotersztajn  R Epand  A Mallat  C Pavoine  F Pecker 《Biochimie》1985,67(10-11):1169-1176
The liver plasma membrane Ca2+ pump is supposed to extrude cytosolic calcium out of the cell. This system has now been well defined on the basis of its plasma membrane origin, its high affinity Ca2+ -stimulated ATPase activity, its Ca2+ transport activity, its phosphorylated intermediate. The liver calcium pump appears to be a target of hormonal action since it has been shown that glucagon and calcium mobilizing hormones namely alpha 1-adrenergic agonists, vasopressin, angiotensin II inhibit this system. The present review details the mechanism of calcium pump inhibition by glucagon and points out its difference from the inhibition process induced by calcium mobilizing hormones. We conclude that the inhibitory action of the Ca2+ mobilizing hormones and glucagon on the liver plasma membrane Ca2+ pump might play a key role in the actions of these hormones by prolonging the elevation in cytosolic free Ca2+.  相似文献   

14.
Complete primary structure of a human plasma membrane Ca2+ pump   总被引:9,自引:0,他引:9  
cDNAs coding for a plasma membrane Ca2+ pump were isolated from a human teratoma library and sequenced. The translated sequence contained 1,220 amino acids with a calculated molecular weight of 134,683. All regions of functional importance known from other ion-transporting ATPases could be identified. The translated sequence also contained, near the carboxyl terminus, the calmodulin-binding domain and two domains which are very rich in glutamic acid and aspartic acid. These two domains resemble calmodulin somewhat and one of them may play a role in the binding of Ca2+. The enzyme also contains domains rich in serine and threonine, one of which has a sequence matching those of good cAMP-dependent protein kinase substrates. The carboxyl-terminal region is important for regulation by calmodulin, proteolysis, and phosphorylation. Near the amino terminus are two domains which are very rich in lysine and glutamic acid, as well as two domains resembling EF hands, one of which also has some resemblance to calmodulin. Comparison of the cloned sequence with peptide sequences from the erythrocyte Ca2+ pump showed that the two proteins have a very high proportion of identical residues but are not 100% identical, indicating that they represent different isozymes.  相似文献   

15.
B Foder  O Scharff 《Cell calcium》1992,13(9):581-591
Resealed human red cell ghosts were loaded with Fura-2, ATP, Mg2+, and either calmodulin (CaM) or, to prevent CaM activation of the Ca2+ pump, a synthetic peptide that antagonized endogenous CaM (an analogue of the CaM binding domain of protein kinase II, referred to as 'antiCaM'). The ghosts reduced the cytosolic concentration of ionized calcium ([Ca2+]i) to 193 +/- 60 nM (SD, n = 15) in a medium containing 1 mM Ca2+ and to 30 +/- 27 nM (SD, n = 62) in a medium without Ca2+ addition. Without ATP, i.e. no fuelling of the Ca2+ pump, the [Ca2+]i remained high (approx. 5 microM or higher). The simultaneous addition of the ionophore A23187 and Ca2+ rapidly increased the Ca2+ influx, which in the CaM loaded ghosts caused a solitary spike of [Ca2+]i, reaching maximum around 2 microM within 24 +/- 6 s (SD, n = 40). On the contrary, in the ghosts loaded with antiCaM, the addition of A23187 with Ca2+ raised [Ca2+]i during the first 2 min to a high level (2-4 microM) with no preceding spike. Pre-incubation of CaM-ghosts with Ca2+ diminished the height of the Ca2+ spike, and treatment with trypsin even removed the Ca2+ spike. The trypsin treatment activated the Ca2+ pump prior to the rise of [Ca2+]i, making the time-consuming CaM activation unnecessary. In conclusion, the Ca2+ spiking is dependent on a delayed CaM activation of the plasma membrane Ca2+ pump in response to a rapid increase of Ca2+ influx.  相似文献   

16.
The role of internal stores and plasma membrane Ca2+ pumps in controlling [Ca2+]i during agonist stimulation and their regulation by agonists are not well understood. We report here measurements of intracellular ([Ca2+]i) and extracellular ([Ca2+]o) Ca2+ concentrations in agonist-stimulated pancreatic acini in an effort to directly address these questions. Stimulation of acini suspended in Ca(2+)-free or Ca(2+)-containing medium with Ca2+ mobilizing agonists resulted in a typical transient increase in [Ca2+]i. Thapsigargin, a specific inhibitor of internal Ca2+ pumps, inhibited the rate of [Ca2+]i reduction after agonist stimulation by approximately 40%. Under the same conditions, thapsigargin had no effect on the rate of the unidirectional Ca2+ efflux across the plasma membrane as revealed by measurements of [Ca2+]o. These findings suggest that internal Ca2+ pumps actively remove Ca2+ from the cytosol during continued agonist stimulation. The correlation between the reduction in [Ca2+]i and the increase in [Ca2+]o showed that Ca2+ efflux from cells stimulated with agonist and thapsigargin represent Ca2+ efflux across the plasma membrane. Inhibition of cells exposed to agonist and thapsigargin with a specific antagonist sharply reduced the rates of the [Ca2+]i decrease and the accompanied [Ca2+]o increase. Hence, at comparable [Ca2+]i, Ca2+ efflux from stimulated cells was about 3-fold faster than that from resting cells, indicating that agonists directly activate the plasma membrane Ca2+ pump. To study the role of [Ca2+]i increase in plasma membrane Ca2+ pump activation the acini were loaded with 1,2-bis-(2-aminophenoxyethane-N,N,N',N')-tetraacetic acid (BAPTA), and [Ca2+]o was measured during agonist stimulation. Surprisingly, although BAPTA completely prevented the increase in [Ca2+]i, Ca2+ efflux rate was reduced by only 34%. These findings provide the first evidence for Ca(2+)-independent activation of the plasma membrane Ca2+ pump by Ca2+ mobilizing agonists.  相似文献   

17.
Asn879 in the transmembrane segment M6 of the plasma membrane Ca2+ pump (PMCA human isoform 4xb) has been proposed to coordinate Ca2+ at the transport site through its carboxylate. This idea agrees with the fact that this Asn is conserved in other Ca2+-ATPases but is replaced by Asp, Glu, and other residues in closely related 2P-type ATPases of different ionic specificity. Previous mutagenesis studies have shown that the substitution of Ala for Asn abolishes the activity of the enzyme (Adebayo et al., 1995; Guerini et al., 1996). We have constructed a mutant PMCA in which the Asn879 was substituted by Asp. The mutant protein was expressed in Saccharomyces cerevisiae, solubilized and purified by calmodulin affinity chromatography. The Asn879Asp PMCA mutant exhibited about 30% of the wild type Ca2+-dependent ATPase activity and only a minor reduction of the apparent affinity for Ca2+. The decrease in the Ca2+-ATPase of the mutant enzyme was in parallel with the reduction in the amount of phosphoenzyme formed from Ca2+ plus ATP. Noteworthy, the mutation nearly eliminated the ability of the enzyme to hydrolyze pNPP which is maximal in the absence of Ca2+ revealing a major effect of the mutation on the Ca2+-independent reactions of the transport cycle. At a pH low enough to protonate the Asp carboxylate the pNPPase activity of Asn879Asp increased, suggesting that the binding of protons to Asn879 is essential for the activities catalyzed by E2-like forms of the enzyme.  相似文献   

18.
In this paper we report calculations of electrostatic interactions between the transducin (G(t)) betagamma heterodimer (G(t)betagamma) and phospholipid membranes. Although membrane association of G(t)betagamma is due primarily to the hydrophobic penetration into the membrane interior of a farnesyl chain attached to the gamma subunit, structural studies have revealed that there is a prominent patch of basic residues on the surface of the beta subunit surrounding the site of farnesylation that is exposed upon dissociation from the G(t)alpha subunit. Moreover, phosducin, which produces dissociation of G(t)betagamma from membranes, interacts directly with G(t)betagamma and introduces a cluster of acidic residues into this region. The calculations, which are based on the finite difference Poisson-Boltzmann method, account for a number of experimental observations and suggest that charged residues play a role in mediating protein-membrane interactions. Specifically, the calculations predict the following. 1) Favorable electrostatic interactions enhance the membrane partitioning due to the farnesyl group by an order of magnitude although G(t)betagamma has a large net negative charge (-12). 2) This electrostatic attraction positions G(t)betagamma so that residues implicated in mediating the interaction of G(t)betagamma with its membrane-bound effectors are close to the membrane surface. 3) The binding of phosducin to G(t)betagamma diminishes the membrane partitioning of G(t)betagamma by an order of magnitude. 4) Lowering the ionic strength of the solution converts the electrostatic attraction into a repulsion. Sequence analysis and homology model building suggest that our conclusions may be generalized to other Gbetagamma and phosducin isoforms as well.  相似文献   

19.
In previous work (Sankaran, B., Osterhout, J., Wu, D., and Smrcka, A. V. (1998) J. Biol. Chem. 273, 7148-7154), we showed that overlapping peptides, N20K (Asn(564)-Lys(583)) and E20K (Glu(574)-Lys(593)), from the catalytic domain of phospholipase C (PLC) beta2 block Gbetagamma-dependent activation of PLC beta2. The peptides could also be directly cross-linked to betagamma subunits with a heterobifunctional cross-linker succinimidyl 4-[N-maleimidomethyl]-cyclohexane-1-carboxylate. Cross-linking of peptides to Gbeta(1) was inhibited by PLC beta2 but not by alpha(i1)(GDP), indicating that the peptide-binding site on beta(1) represents a binding site for PLC beta2 that does not overlap with the alpha(i1)-binding site. Here we identify the site of peptide cross-linking and thereby define a site for PLC beta2 interaction with beta subunits. Each of the 14 cysteine residues in beta(1) were altered to alanine. The ability of the PLC beta2-derived peptide to cross-link to each betagamma mutant was then analyzed to identify the reactive sulfhydryl moiety on the beta subunit required for the cross-linking reaction. We find that C25A was the only mutation that significantly affected peptide cross-linking. This indicates that the peptide is specifically binding to a region near cysteine 25 of beta(1) which is located in the amino-terminal coiled-coil region of beta(1) and identifies a PLC-binding site distinct from the alpha subunit interaction site.  相似文献   

20.
Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) consist of a nucleotide-binding alpha subunit and a high-affinity complex of beta and gamma subunits. There is molecular heterogeneity of beta and gamma, but the significance of this diversity is poorly understood. Different G protein beta and gamma subunits have been expressed both singly and in combinations in Sf9 cells. Although expression of individual subunits is achieved in all cases, beta gamma subunit activity (support of pertussis toxin-catalyzed ADP-ribosylation of rGi alpha 1) is detected only when beta and gamma are expressed concurrently. Of the six combinations of beta gamma tested (beta 1 or beta 2 with gamma 1, gamma 2, or gamma 3), only one, beta 2 gamma 1, failed to generate a functional complex. Each of the other five complexes has been purified by subunit exchange chromatography using Go alpha-agarose as the chromatographic matrix. We have detected differences in the abilities of the purified proteins to support ADP-ribosylation of Gi alpha 1; these differences are attributable to the gamma component of the complex. When assayed for their ability to inhibit calmodulin-stimulated type-I adenylylcyclase activity or to potentiate Gs alpha-stimulated type-II adenylylcyclase, recombinant beta 1 gamma 1 and transducin beta gamma are approximately 10 and 20 times less potent, respectively, than the other complexes examined. Prenylation and/or further carboxyl-terminal processing of gamma are not required for assembly of the beta gamma subunit complex but are indispensable for high affinity interactions of beta gamma with either G protein alpha subunits or adenylylcyclases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号