首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Abstract: Using a brain microdialysis technique, we have shown in the rat that local infusion of a selective and competitive N -methyl- d -aspartate (NMDA) receptor antagonist, cis -4-phosphonomethyl-2-piperidine carboxylic acid (CGS-19755), into the medial frontal cortex via dialysis tubing caused a concentration-related increase in the extracellular release of dopamine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid in the cortical region. Coinfusion of a sodium channel blocker, tetrodotoxin, completely inhibited the ability of the NMDA antagonist to augment frontal dopamine metabolism. These findings suggest that dopamine neurons projecting to the frontal cortex might be under a tonic transsynaptic inhibition exerted by excitatory amino acid neurotransmission via the NMDA receptor at the level of dopamine terminal fields.  相似文献   

2.
Summary We have explored the role of excitatory amino acids in the increased dopamine (DA) release that occurs in the neostriatum during stress-induced behavioral activation. Studies were performed in awake, freely moving rats, usingin vivo microdialysis. Extracellular DA was used as a measure of DA release; extracellular 3,4-dihydroxyphenylalanine (DOPA) after inhibition of DOPA decarboxylase provided a measure of apparent DA synthesis. Mild stress increased the synthesis and release of DA in striatum. DA synthesis and release also were enhanced by the intra-striatal infusion of N-methyl-D-aspartate (NMDA), an agonist at NMDA receptors, and kainic acid, an agonist at the DL-a-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate (AMPA)/kainate site. Stress-induced increase in DAsynthesis was attenuated by co-infusion of 2-amino-5-phosphonovalerate (APV) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), antagonists of NMDA and AMPA/kainate receptors, respectively. In contrast, intrastriatal APV, CNQX, or kynurenic acid (a non-selective ionotropic glutamate receptor antagonist) did not block the stress-induced increase in DArelease. Stress-induced increase in DA release was, however, blocked by administration of tetrodotoxin along the nigrostriatal DA projection. It also was attenuated when APV was infused into substantia nigra. Thus, glutamate may act via ionotropic receptors within striatum to regulate DA synthesis, whereas glutamate may influence DA release via an action on receptors in substantia nigra. However, our method for monitoring DA synthesis lowers extracellular DA and this may permit the appearance of an intra-striatal glutamatergic influence by reducing a local inhibitory influence of DA. If so, under conditions of low extracellular DA glutamate may influence DA release, as well as DA synthesis, by an intrastriatal action. Such conditions might occur during prolonged severe stress and/or DA neuron degeneration. These results may have implications for the impact of glutamate antagonists on the ability of patients with Parkinson's disease to tolerate stress.  相似文献   

3.
Abstract: The technique of intracerebral microdialysis was used to assess the effect of stress on the extracellular concentrations of excitatory amino acids, glutamate and aspartate, in the rat medial prefrontal cortex, hippocampus, striatum, and nucleus accumbens. A 20-min restraint procedure led to an increase in extracellular glutamate in all regions tested. The increase in glutamate levels was significantly higher in the prefrontal cortex than that observed in other regions. With the exception of the striatum, extracellular levels of aspartate were increased in all regions. Furthermore, the increase in aspartate levels was significantly higher in prefrontal cortex compared to hippocampus and nucleus accumbens. Local perfusion of tetrodotoxin during the restraint procedure significantly decreased the stress-induced increase in extracellular excitatory amino acids. In order to ensure that the above results were not an artifact of restraint not associated with stress (e.g., decreased mobility), we also examined the effect of swimming stress on the extracellular levels of excitatory amino acids in selected regions, i.e., striatum and medial prefrontal cortex. Both regions displayed a significant increase in extracellular levels of aspartate and glutamate following 20 min of swimming in room temperature water. This study provides direct evidence that stress increases the neuronal release of excitatory amino acids in a regionally selective manner. The implications of the present findings for stress-induced catecholamine release and/or hippocampal degeneration are discussed.  相似文献   

4.
Abstract: The effect of various classes of excitatory amino acid agonists on the release of dopamine in the medial prefrontal cortex (PFC) of awake rats was examined using intracerebral microdialysis. Local infusion of 20 µ M α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), through the microdialysis probe, produced a significant increase of more than twofold in extracellular levels of dopamine. Application of 100 µ M AMPA increased these levels nearly 15 fold. The AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (50 µ M ) blocked the increase in dopamine release produced by 20 µ M AMPA. Local infusion of kainate at concentrations of 5 and 20 µ M increased dopamine release by nearly 150 and 500%, respectively. Local application of CNQX (50 µ M ) before 20 µ M kainate significantly attenuated the stimulatory effect of kainate on dopamine levels. In contrast to AMPA and kainate, infusion of N -methyl- d -aspartate (NMDA) at 20 or 100 µ M did not increase dopamine release. In fact, a trend toward a decrease in dopamine release was evident after 100 µ M NMDA. The present study indicates that the in vivo release of dopamine in the PFC is facilitated by AMPA and kainate receptors. This modulation is more profound than that previously reported in the basal ganglia. The lack of an excitatory effect of NMDA is in agreement with recent reports that the NMDA receptor may inhibit indirectly dopaminergic neurotransmission in the PFC.  相似文献   

5.
Polyamines in Human Brain: Regional Distribution and Influence of Aging   总被引:2,自引:0,他引:2  
Abstract: Depolarization of adult rat forebrain slices with veratrine induced the release of excitatory amino acids (glutamate and aspartate), the synthesis of nitric oxide (NO), and increases in cyclic GMP (cGMP). The NO synthase inhibitors N ω-monomethyl- l -arginine and N ω-nitro- l -arginine methyl ester decreased the release of NO and the levels of cGMP without affecting the release of excitatory amino acids. In contrast, the antiepileptic drug lamotrigine inhibited the release of excitatory amino acids and of NO, and decreased the levels of cGMP without causing a significant direct inhibition of the NO synthase. Furthermore, the synthesis of NO and the increases in cGMP induced by veratrine were partially blocked by the N -methyl- d -aspartate (NMDA) receptor antagonist MK-801 but not by 6-nitro-7-sulphamobenzo( f )quinoxaline-2,3-dione, a non-NMDA receptor antagonist. Neither of these compounds inhibited directly the NO synthase or the release of excitatory amino acids. Thus, these three types of compound act as an inhibitor of voltage-sensitive sodium channels (lamotrigine), as a receptor antagonist (MK-801), or as direct inhibitors of the NO synthase, to block the pathway leading to increased cGMP after veratrine depolarization. It is likely that some of the pharmacological and therapeutic actions shared by these three types of compound are, at least in part, a consequence of inhibition of the synthesis of NO.  相似文献   

6.
Abstract: In vivo microdialysis was used to assess the hypothesis that the stress-induced increase in dopamine release in the prefrontal cortex is mediated by stress-activated glutamate neurotransmission in this region. Local perfusion of an α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, blocked the stress-induced increase in dopamine levels, whereas an NMDA receptor antagonist, 2-amino-5-phosphonopentanoic acid, at the dose tested, was not able to alter this response significantly. These data indicate that the effect of stress on dopamine release in the prefrontal cortex is mediated locally by activation of AMPA/kainate receptors, which modulate the release of dopamine in this region.  相似文献   

7.
The effects of selective adenosine receptor agonists [N6-cyclopentyladenosine (CPA) and N-ethylcarboxamidoadenosine (NECA)] and antagonists [8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and 9-chloro-2-(2-furanyl)-5,6-dihydro-1,2,4-triazolo[1,5-c]quinazoline-5-im ine (CGS-15943A)] on aspartate and glutamate release from the ischemic rat cerebral cortex were studied with the cortical cup technique. Cerebral ischemia (for 20 min) was elicited by four-vessel occlusion. Excitatory amino acid releases were compared from control ischemic rats and drug-treated rats. Basal levels of aspartate and glutamate release were not greatly affected by pretreatment with the adenosine receptor agonists or antagonists. However, CPA (10(-10) M) and NECA (10(-9) M) significantly inhibited the ischemia-evoked release of aspartate and glutamate into cortical superfusates. The ability to block ischemia-evoked release of excitatory amino acids was not evident at higher concentrations of CPA (10(-6) M) or NECA (10(-5) M). The selective A1 receptor antagonist DPCPX also had no effect on release when administered at a low dosage (0.01 mg/kg, i.p.) but blocked the ischemia-evoked release of aspartate and glutamate at a higher dosage (0.1 mg/kg). Evoked release was inhibited by the selective A2 receptor antagonist CGS-15943A (0.1 mg/kg, i.p.). Thus, adenosine and its analogs may suppress ischemia-evoked release of excitatory neurotransmitter amino acids via high-affinity A1 receptors, whereas coactivation of lower-affinity A2 receptors may block (or reverse) the A1-mediated response.  相似文献   

8.
In the present study we have applied a brain microdialysis technique to investigate the effects of ouabain infusion on the release of dopamine, acetylcholine, and amino acids from striatal neurons in freely moving rats. Ouabain caused an increase in the dialysate levels of dopamine; its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC); and the amino acids glutamate, aspartate, taurine, glycine, alanine, serine, asparagine, and threonine. The ouabain-induced increase in dopamine was dose dependent and explosive (100-fold at an infusion concentration of 1 mmol/L) and contrasted strongly with the small effect of the glycoside on the output of DOPAC. We investigated the nature of ouabain-induced transmitter release by determining its sensitivity to coinfusion with tetrodotoxin or the calcium antagonist Mg2+. In the case of dopamine two mechanisms of ouabain-induced release could be established. At lower infusion concentrations ouabain induced an exocytotic type of release whereas at higher concentrations the release was probably carrier mediated. In the case of amino acids we noticed a calcium-independent release which was nerve impulse flow dependent in the case of glutamate and aspartate and impulse flow independent in the case of alanine, serine, glycine, threonine, and asparagine. Ouabain induced a decrease in the release of acetylcholine and glutamine.  相似文献   

9.
In rat mesencephalic cell cultures, L-glutamate at concentrations ranging from 100 microM to 1 mM stimulated release of [3H]dopamine that was attenuated by the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 6,7-dinitroquinoxalinedione, but not by the selective NMDA receptor antagonists (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801; 10 microM) and 3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate (300 microM). Even at 1 mM glutamate, this release was Ca2+ dependent. These observations suggest that the release was mediated by a non-NMDA receptor. Only release stimulated by a lower concentration (10 microM) of glutamate was inhibited by MK-801 (10 microM), indicating that glutamate at this concentration activates the NMDA receptor. By contrast, L-aspartate at concentrations of 10 microM to 1 mM evoked [3H]dopamine release that was completely inhibited by MK-801 (10 microM) and was also Ca2+ dependent (tested at 1 and 10 mM aspartate). Thus, effects of aspartate involved activation of the NMDA receptor. Sulfur-containing amino acids (L-homocysteate, L-homocysteine sulfinate, L-cysteate, L-cysteine sulfinate) also evoked [3H]dopamine release. Release evoked by submillimolar concentrations of these amino acids was attenuated by MK-801 (10 microM), indicating involvement of the NMDA receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Abstract: Systemic administration of the anxiogenic benzodiazepine inverse agonist FG 7142 has been shown to increase selectively dopamine utilization in the medial prefrontal cortex and the shell, but not core, subregion of the nucleus accumbens. In the present study, we examined the functional interaction between benzodiazepine and N -methyl- d -aspartate receptor influences on dopamine utilization in these areas. Male Sprague-Dawley rats were pretreated with the glycine receptor antagonist (+)-HA 966 (15 mg/kg, i.p.) or saline 15 min before FG 7142 (20 mg/kg, i.p.) or vehicle administration. Subjects were killed 30 min later and assayed for tissue concentrations of dopamine and its major metabolite 3,4-dihydroxyphenylacetic acid in the core and shell subdivisions of the nucleus accumbens and the medial prefrontal cortex. (+)-HA 966 administration blocked FG 7142-induced increased dopamine utilization in both the medial prefrontal cortex and the shell subdivision of the nucleus accumbens. Results are discussed in terms of N -methyl- d -aspartate receptor influences on the response of mesoaccumbal dopamine neurons to stress.  相似文献   

11.
Abstract: In the present study, extracellular levels of the neuropeptide cholecystokinin (CCK), of the monoamine dopamine and its metabolites 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and of the excitatory amino acids glutamate and aspartate were simultaneously monitored by microdialysis in the neostriatum of halothane-anesthetized rats under basal and K+-depolarizing conditions. Extracellular CCK and dopamine levels, but not glutamate and aspartate levels, were decreased by perfusion with a Ca2+-free medium, under both basal and K+-depolarizing conditions. HPLC revealed that the majority of the CCK-like immunoreactivity in the perfusates coeluted with CCK octapeptide. Striatal extracellular CCK levels were decreased by decortication plus callosotomy, with a parallel decrease in glutamate levels. Striatal extracellular levels of dopamine, DOPAC., and HVA were significantly decreased in animals treated previously with a unilateral 6-hydroxydopamine injection into the medial forebrain bundle. In these animals, however, the effect of decortication plus callosotomy on CCK and glutamate levels was not further augmented. Thus, this study supports the hypothesis of a neuronal origin of extracellular CCK and dopamine monitored with microdialysis in the striatum of the rat, and also supports the idea of a partly contralateral origin of corticostriatal CCK and glutamate inputs.  相似文献   

12.
The effects of the excitatory amino acid analogs kainate (KA) and N-methyl- -aspartate (NMDA) on release of amino acids from astrocytes in primary culture were investigated. Under basal conditions, glutamine was present in the medium at 15 μM. The levels of serine and taurine were 1.5 and 2.0 μM, respectively, while the concentration of other amino acids was below 1 μM. At 10 μM, KA did not affect amino acid release, whereas 100 μM KA enhanced glutamine release by 34% and taurine release by 85%. At 1 mM, KA stimulated the release of all amino acids measured. However, while most amino acids increased by 50–150%, glutamate and aspartate were elevated by more than 3000%. The effect of KA was greatly reduced by 1 mM kynurenate, an excitatory amino acid receptor antagonist. 1 mM NMDA did not stimulate amino acid release from the cultures. The results indicate that astrocytes are endowed with KA-receptive sites, but they do not seem to possess NMDA receptors.  相似文献   

13.
Slices of hippocampal area CA1 were employed to test the hypothesis that the release of glutamate and aspartate is regulated by the activation of excitatory amino acid autoreceptors. In the absence of added Mg2+, N-methyl-D-aspartate (NMDA)-receptor antagonists depressed the release of glutamate, aspartate, and gamma-aminobutyrate evoked by 50 mM K+. Conversely, the agonist NMDA selectively enhanced the release of aspartate. The latter action was observed, however, only when the K+ stimulus was reduced to 30 mM. Actions of the competitive antagonists 3-[(+/- )-2-carboxypiperazin-4-yl]-propyl-l-phosphonic acid (CPP) and D-2-amino-5-phosphonovalerate (D-AP5) differed, in that the addition of either 1.2 mM Mg2+ or 0.1 microM tetrodotoxin to the superfusion medium abolished the depressant effect of CPP without diminishing the effect of D-AP5. These results suggest that the activation of NMDA receptors by endogenous glutamate and aspartate enhances the subsequent release of these amino acids. The cellular mechanism may involve Ca2+ influx through presynaptic NMDA receptor channels or liberation of a diffusible neuromodulator linked to the activation of postsynaptic NMDA receptors. (RS)-alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, a selective quisqualate receptor agonist, and kainate, an agonist active at both kainate and quisqualate receptors, selectively depressed the K(+)-evoked release of aspartate. Conversely, 6-cyano-7-nitro-quinoxaline-2,3-dione, an antagonist active at both quisqualate and kainate receptors, selectively enhanced aspartate release. These results suggest that glutamate can negatively modulate the release of aspartate by activating autoreceptors of the quisqualate, and possibly also of the kainate, type. Thus, the activation of excitatory amino acid receptors has both presynaptic and postsynaptic effects.  相似文献   

14.
Abstract: Disruption of corticostriatal glutamate input in the striatum decreased significantly extracellular striatal glutamate and dopamine levels. Local administration of 300 µ M concentration of excitatory receptor agonist kainic acid increased significantly extracellular striatal dopamine in intact freely moving rats. These findings support the hypothesis that glutamate exerts a tonic facilitatory effect on striatal dopamine release. The effect of kainic acid on extracellular striatal glutamate concentration in intact rats was a biphasic increase. The first glutamate increase can be explained by stimulation of presynaptic kainate receptors present on corticostriatal glutamatergic nerve terminals; the second increase is probably the result of a continuous interaction of the different striatal neurotransmitters after disturbance of their balance. Release of dopamine and glutamate was modulated differently in the intact striatum and in the striatum deprived of corticostriatal input. Dopamine release in the denervated striatum after kainate receptor stimulation was significantly lower than in intact striatum, confirming the so-called cooperativity between glutamate and kainic acid. Loss of presynaptic kainate receptors on the glutamatergic nerve terminals after decortication resulted in a loss of effect of kainic acid on glutamate release in denervated striatum. Aspartate showed no significant changes in this study.  相似文献   

15.
Abstract: Electrical stimulation of rat hippocampal slices evoked the release of excitatory amino acids and purines, as reflected by a time-dependent increase in the extracellular levels of glutamate and adenosine, as well as by the increased efflux of radioactivity in slices preloaded with both [14C]glutamate and [3H]adenosine. The evoked release of excitatory amino acids and purines was amplified when slices were exposed to 8-cyclopentyl-1,3-dipropylxanthine (a selective A1 adenosine receptor antagonist), (+)-α-methyl-4-carboxyphenylglycine [a mixed antagonist of metabotropic glutamate receptors (mGluRs)], or (2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)glycine (a selective antagonist of class II mGluRs). In contrast, 2-chloro-N6-cyclopentyladenosine (CCPA; a selective A1 receptor agonist) or (2S,1R,2R,3R)-(2,3-dicarboxycyclopropyl)glycine (DCG-IV; a selective agonist of class II mGluRs) reduced the evoked release of excitatory amino acids and purines. CCPA and DCG-IV also reduced the increase in cyclic AMP formation induced by either forskolin or electrical stimulation in hippocampal slices. The inhibitory effect of CCPA and DCG-IV on release or cyclic AMP formation was less than additive. We conclude that the evoked release of excitatory amino acids and purines is under an inhibitory control by A1 receptors and class II mGluRs, i.e., mGluR2 or 3, which appear to operate through a common transduction pathway. In addition, although these receptors are activated by endogenous adenosine and glutamate, they can still respond to pharmacological agonists. This provides a rationale for the use of A1 or class II mGluR agonists as neuroprotective agents in experimental models of excitotoxic neuronal degeneration.  相似文献   

16.
Abstract: We examined the regulation of neostriatal tyrosine hydroxylation during acute stress, testing the hypothesis that excitatory amino acids (EAAs) contribute to the stress-evoked increase in dopamine (DA) synthesis. Dialysis probes implanted into neostriatum permitted delivery of drugs and sampling of extracellular fluid. Rats were exposed to 30 min of intermittent tail shock during infusion of an inhibitor of aromatic amino acid decarboxylase (AAAD), NSD-1015 (100 µM), and DOPA was measured in the dialysate. Tail shock was applied beginning either 15 min after the onset of NSD-1015 treatment (the initial rate of DOPA accumulation) or 75 min after the onset of treatment (when DOPA had approached steady state). Tail shock increased the steady-state levels of extracellular DOPA in neostriatum (+40%). However, there was no change in the initial rate of DOPA accumulation unless animals also received the D2 receptor antagonist eticlopride (50 nM), in which case an increase was observed (+228%). The impact of tail shock on the steady-state level of DOPA was attenuated by the D2 agonist quinpirole (100 µM), or by 2-amino-5-phosphonovalerate (APV) (100 µM) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (100 µM), EAA antagonists acting at NMDA or d ,l -α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate (AMPA) receptors, respectively. These data suggest that acute stress normally has little effect on tyrosine hydroxylation in neostriatum due to the inhibitory influence of DA in the extracellular fluid. However, when that influence is absent (e.g., during extended inhibition of DOPA decarboxylation or blockade of DA receptors), stress increases tyrosine hydroxylation via EAAs acting on NMDA and AMPA receptors. Thus, EAAs released from corticostriatal projections may stimulate DA synthesis and thereby restore dopaminergic activity under conditions in which the availability of DA for release has been compromised.  相似文献   

17.
Our previous studies have shown a local decrease in glutamate and aspartate levels during seizures, induced by picrotoxin microdialysis in the hippocampus of chronic freely moving rats. In this paper, we study the effect of continuous hippocampal microperfusion of the NMDA, AMPA and kainate glutamate receptor inhibitors 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine (MK-801); 6,7-dinitroquinoxaline-2,3-dione (DNQX), and 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466). We also examine the action of L(-)-threo-3-hydroxyaspartic acid (THA), a glutamate and aspartate reuptake blocker, on the modification of extracellular glutamate and aspartate levels induced by picrotoxin, using the microdialysis method in freely moving rats. We found that changes in extracellular hippocampal concentrations in both amino acids are prevented by NMDA, AMPA and kainate receptor inhibitors. Seizures elicited under DNQX also induce a transient increase in aspartate extracellular levels coincident with seizure time. L(-)-threo-3-hydroxyaspartic acid increased the basal extracellular concentrations of both amino acids, but did not prevent the seizure-related decrease. Our results suggest that glutamate, the major neurotransmitter at the synaptic level, may also play an important role in non-synaptic transmission during seizures.  相似文献   

18.
In primary cultures of neurons from rat cerebral cortex and neostriatum, excitatory amino acids stimulate the translocation of protein kinase C (PKC) from the cytoplasm to the membrane. In the presence of a physiological concentration of Mg2+ in the extracellular medium, glutamate induces PKC translocation by binding to both N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) excitatory amino acid receptors. Quisqualate translocates the enzyme by stimulating primarily AMPA receptors and possibly metabotropic receptors. NMDA receptor-induced PKC translocation is sodium independent, whereas quisqualate receptor-induced PKC translocation is sodium dependent; none of the agonists is active in the absence of calcium from the extracellular medium. Muscimol does not modify excitatory amino acid stimulation; however, blockade of gamma-aminobutyric acid(A) receptors by bicuculline greatly enhances glutamate-induced PKC translocation. This enhancement is blocked by the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) and by tetrodotoxin.  相似文献   

19.
The extracellular levels of aspartate, glutamate and GABA were measured by microdialysis, coupled with an HPLC method, in rat prefrontal cortex (mPFC) and ventral hippocampus (VH) before and during the performance of a step-down inhibitory task. The basal levels of glutamate were about 50% higher than those of aspartate, and GABA levels were about 20-folds smaller than those of the excitatory amino acids. There were no significant differences in the basal levels of any of the three amino acids between the two brain regions. The extracellular levels of aspartate increased during acquisition and recall trials in both VH and mPFC, whereas those of glutamate increased in the VH during acquisition only. A significant increase in GABA levels was also detected during acquisition but only in the mPFC. The neuronal origin of the increased extracellular levels of aspartate, glutamate and GABA was demonstrated by administering tetrodotoxin directly into the mPFC or VH by reverse dialysis. These findings, together with previous evidence from our and other laboratories, indicate a differential release of aspartate and glutamate from excitatory neurons during the performance of behavioral responses, and therefore, distinct roles for the two excitatory amino acids should be envisaged.  相似文献   

20.
A variety of physiological and pathological factors induce cellular swelling in the brain. Changes in cell volume activate several types of ion channels, which mediate the release of inorganic and organic osmolytes and allow for compensatory cell volume decrease. Volume-regulated anion channels (VRAC) are thought to be responsible for the release of some of organic osmolytes, including the excitatory neurotransmitters glutamate and aspartate. In the present study, we compared the in vivo properties of the swelling-activated release of glutamate, aspartate, and another major brain osmolyte taurine. Cell swelling was induced by perfusion of hypoosmotic (low [NaCl]) medium via a microdialysis probe placed in the rat cortex. The hypoosmotic medium produced several-fold increases in the extracellular levels of glutamate, aspartate and taurine. However, the release of the excitatory amino acids differed from the release of taurine in several respects including: (i) kinetic properties, (ii) sensitivity to isoosmotic changes in [NaCl], and (iii) sensitivity to hydrogen peroxide, which is known to modulate VRAC. Consistent with the involvement of VRAC, hypoosmotic medium-induced release of the excitatory amino acids was inhibited by the anion channel blocker DNDS, but not by the glutamate transporter inhibitor TBOA or Cd2+, which inhibits exocytosis. In order to elucidate the mechanisms contributing to taurine release, we studied its release properties in cultured astrocytes and cortical synaptosomes. Similarities between the results obtained in vivo and in synaptosomes suggest that the swelling-activated release of taurine in vivo may be of neuronal origin. Taken together, our findings indicate that different transport mechanisms and/or distinct cellular sources mediate hypoosmotic medium-induced release of the excitatory amino acids and taurine in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号