首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Commentary to: Tombola F, Ulbrich M, Isacoff I. The voltage-gated proton channel Hv1 has two pores, each controlled by one voltage sensor. Neuron 2008; 58:546-66.

Commentary to: Lee S-Y, Letts JA, MacKinnon R. Dimeric subunit stoichiometry of the human voltage-dependent proton channel Hv1. Proc Natl Acad Sci 2008; 105:7692-5.  相似文献   

2.
Oppermann M 《Cellular signalling》2004,16(11):1201-1210
CC chemokine receptor 5 (CCR5) is a seven-transmembrane, G protein-coupled receptor (GPCR) which regulates trafficking and effector functions of memory/effector T-lymphocytes, macrophages, and immature dendritic cells. It also serves as the main coreceptor for the entry of R5 strains of human immunodeficiency virus (HIV-1, HIV-2). Chemokine binding to CCR5 leads to cellular activation through pertussis toxin-sensitive heterotrimeric G proteins as well as G protein-independent signalling pathways. Like many other GPCR, CCR5 is regulated by agonist-dependent processes which involve G protein coupled receptor kinase (GRK)-dependent phosphorylation, beta-arrestin-mediated desensitization and internalization. This review discusses recent advances in the elucidation of the structure and function of CCR5, as well as the complex mechanisms that regulate CCR5 signalling and cell surface expression.  相似文献   

3.
Our understanding of plant potassium transport has increased in the past decade through the application of molecular biological techniques. In this review, recent work on inward and outward rectifying K(+) channels as well as high affinity K(+) transporters is described. Through the work on inward rectifying K(+) channels, we now have precise details on how the structure of these proteins determines functional characteristics such as ion conduction, pH sensitivity, selectivity and voltage sensing. The physiological function of inward rectifying K(+) channels in plants has been clarified through the analysis of expression patterns and mutational analysis. Two classes of outward rectifying K(+) channels have now been cloned from plants and their initial characterisation is reviewed. The physiological role of one class of outward rectifying K(+) channel has been demonstrated to be involved in long distance transport of K(+) from roots to shoots. The molecular structure and function of two classes of energised K(+) transporters are also reviewed. The first class is energised by Na(+) and shares structural similarities with K(+) transport mechanisms in bacteria and fungi. Structure-function studies suggest that it should be possible to increase the K(+) and Na(+) selectivity of these transporters, which will enhance the salt tolerance of higher plants. The second class of K(+) transporter is comprised of a large gene family and appears to have a dual affinity for K(+). A suite of molecular techniques, including gene cloning, oocyte expression, RNA localisation and gene inactivation, is now being used to fully characterise the biophysical and physiological function of plants K(+) transport mechanisms.  相似文献   

4.
5.
Kinesin superfamily proteins (KIFs) are key players or 'hub' proteins in the intracellular transport system, which is essential for cellular function and morphology. The KIF superfamily is also the first large protein family in mammals whose constituents have been completely identified and confirmed both in silico and in vivo. Numerous studies have revealed the structures and functions of individual family members; however, the relationships between members or a perspective of the whole superfamily structure until recently remained elusive. Here, we present a comprehensive summary based on a large, systematic phylogenetic analysis of the kinesin superfamily. All available sequences in public databases, including genomic information from all model organisms, were analyzed to yield the most complete phylogenetic kinesin tree thus far, comprising 14 families. This comprehensive classification builds on the recently proposed standardized nomenclature for kinesins and allows systematic analysis of the structural and functional relationships within the kinesin superfamily.  相似文献   

6.
7.
8.
Cholesteryl ester transfer protein (CETP) is important clinically and is the current target for new drug development. Its structure and mechanism of action has not been well understood. We have combined current new structural and functional methods to compare with relevant prior data. These analyses have led us to propose several steps in CETP's function at the molecular level, in the context of its interactions with lipoproteins, e.g., sensing, penetration, docking, selectivity, ternary complex formation, lipid transfer, and HDL dissociation. These new molecular insights improve our understanding of CETP's mechanisms of action.  相似文献   

9.
New insights into the regulation of erythroid cells   总被引:2,自引:0,他引:2  
  相似文献   

10.
P-type ATPases are amongst the most abundant enzymes that are responsible for active transport of ions across biological membranes. Within the last 5 years a detailed picture of the structure and function of these transport ATPases has emerged. Here, we report on the recent progress in elucidating the molecular mechanism of a unique, prokaryotic member of P-type ATPases, the Kdp-ATPase. The review focuses on the catalytic parts of the central subunit, KdpB. The structure of the nucleotide-binding domain was solved by NMR spectroscopy at high resolution and a model of the nucleotide-binding mode was presented. The nucleotide turned out to be 'clipped' into the binding pocket by a pi-pi interaction to F377 on one side and a cation-pi interaction to K395 on the other. The 395KGXXD/E motif and thus the nucleotide-binding mode seems to be conserved in all P-type ATPases, except the heavy metal-transporting (class IB) ATPases. Hence, it can be concluded that KdpB is currently misgrouped as class IA. Mutational studies on two highly conserved residues (D583 and K586) in the transmembrane helix 5 of KdpB revealed that they are indispensable in coupling ATP hydrolysis to ion translocation. Based on these results, two possible pathways for the reaction cycle are discussed.  相似文献   

11.
New insights into fish ion regulation and mitochondrion-rich cells   总被引:2,自引:0,他引:2  
Compared to terrestrial animals, fish have to cope with more-challenging osmotic and ionic gradients from aquatic environments with diverse salinities, ion compositions, and pH values. Gills, a unique and highly studied organ in research on fish osmoregulation and ionoregulation, provide an excellent model to study the regulatory mechanisms of ion transport. The present review introduces and discusses some recent advances in relevant issues of teleost gill ion transport and functions of gill ionocytes. Based on accumulating evidence, a conclusive model of NaCl secretion in gills of euryhaline teleosts has been established. Interpretations of results of studies on freshwater fish gill Na+/Cl- uptake mechanisms are still being debated compared with those for NaCl secretion. Current models for Na+/Cl- uptake are proposed based on studies in traditionally used model species. Many reported inconsistencies are claimed to be due to differences among species, various experimental designs, or acclimation conditions. Having the benefit of advanced techniques in molecular/cellular biology, functional genomics, and model animals, several new notions have recently been raised concerning relevant issues of Na+/Cl- uptake pathways. Several new windows have been opened particularly in terms of molecular mechanisms of ionocyte differentiation and energy metabolite transport between gill cells during environmental challenge.  相似文献   

12.
13.
Light is essential for photosynthesis but excess light is hazardous as it may lead to the formation of reactive oxygen species. Photosynthetic organisms struggle to optimize light utilization and photosynthesis while minimizing photo-oxidative damage. Hereby light to heat dissipation via specialized proteins is a potent mechanism to acclimate toward excess light. In the green alga Chlamydomonas reinhardtii the expression of an ancient light-harvesting protein LHCSR3 enables cells to dissipate harmful excess energy. Herein we summarize newest insights into the function of LHCSR3 from C. reinhardtii.  相似文献   

14.
Water is probably the most important molecule in biology. It solvates molecules, all biochemical reactions occur in it and it is a major driving force in protein folding. Phospholipid membranes separate different water environments, but connections do exist between the different compartments. The integral membrane proteins (IMPs) form these connections. In the case of ions, IMPs form the passageways that regulate ion movement across the membrane. Structural information from three ion distinct channels are examined to see how these channels first select for and then control the movement of their target ions. This review focuses on how these channels select for target ions and control their movement while taking into account and using different properties of water. This includes the use of hydrophobic gates, mimicking the water environment, and controlling ions indirectly by controlling water.  相似文献   

15.
Voltage-dependant Anion Channels, also known as mitochondrial porins, are pore-forming proteins located in the mitochondrial outer membrane (MOM) that, in addition to forming complexes with other proteins that localize to the MOM, also function as the main conduit for transporting metabolites between the cytoplasm and mitochondria. VDACs are encoded by a multi-member gene family, and the number of isoforms and specific functions of VDACs varies between species. Translating the well-described in vitro characteristics of the VDAC isoforms into in vivo functions has been a challenge, with the generation of animal models of VDAC deficiency providing much of the available information about isoform-specific roles in biology. Here, we review the approaches used to create these insect and mammalian animal models, and the conclusions reached by studying the consequences of loss of function mutations on the genetic, physiologic, and biochemical properties of the resulting models. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.  相似文献   

16.
17.
Chromosome stability is ensured by precisely fine-tuned dynamics of mitotic spindles, which are controlled by a network of various microtubule-associated and interacting proteins including the kinesin-13 family. The best characterized member of this family is the mitotic centromere-associated kinesin (MCAK). By efficiently depolymerizing microtubules, MCAK influences various key events during mitosis. MCAK itself is regulated by its interaction partners, its intrinsic conformation switch and the phosphorylation of mitotic kinases like Aurora A/B, cyclin-dependent kinase 1 and Polo-like kinase 1. Perturbing its regulation alters MCAK’s conformation, catalytic activity, subcellular localization and stability, leading further to mitotic defects in spindle formation and chromosome movement. Indeed, MCAK is aberrantly regulated in various cancer types, which is linked to increased invasiveness, metastasis and drug resistance. In the current review, we summarize recently published data concerning MCAK, correlate its conformation changes with its depolymerization activity and function, propose a model of its regulation by multiple mitotic kinases and highlight its potential involvement in oncogenesis and drug resistance.  相似文献   

18.
Hypertrophy of the renal tubular cells, especially those of the proximal tubule (PT), accounts for the majority of the increase in kidney size that follows partial removal of renal mass. The propensity of PTs to enlarge appears to be closely linked to an elevation in glomerular filtration rate and may be related to altered tubular fluid flow rate. Hypertrophied PTs reabsorb fluid at an increased rate in vitro, which indicates an intrinsic adaptation of their transport capacity. The hypertrophied cells demonstrate a predominant increase in basolateral membrane area with little change in luminal surface area. This asymmetric structural hypertrophy does not, however, appear to be accompanied by functional asymmetry, for basolateral Na+-K+ pump activity increases roughly in proportion to the increase in cell protein. The activity of the Na+-H+ antiporter, on the other hand, is increased in the brush-border membrane of proximal tubules derived from animals with reduced renal mass. In view of the reported association of Na+-H+ antiport stimulation and mitogenesis in a variety of cell types, the increased activity of this transporter, possibly induced by an increase in tubular fluid flow rate, could be the local stimulus that initiates hypertrophy and determines the organ specificity of the response.  相似文献   

19.
Summary The function of intermediate-filament (IF) proteins has been a matter of speculation for a long time. Now, the analysis of genetically altered mice is contributing to the understanding of their function. While the initial analysis of knockout mice supports the global view that keratins in epidermis and desmin in muscle serve an important structural function by protecting these tissues against mechanical stress, the detailed examination of these and other mice suggests that IF are more than passive cytoskeletal proteins. This is highlighted by mice with deficiencies for keratins in internal epithelia, vimentin, GFAP, or neurofilament proteins. These lack overt phenotypes expected as a result of cytoskeletal deficiency but show defects compatible with a role of IF in protecting tissues against toxic and other forms of stress. Moreover, the first round of gene replacement experiments suggests that keratins from internal epithelia are unable to take the place of their epidermal counterparts. The development of mice with point mutations, paralleled by the mutation analysis of human diseases and the characterization of IF-associated proteins will be instrumental to understand why evolution has produced such a diverse gene family to encode simple 10 nm diameter filaments.  相似文献   

20.
New insights into the structure and function of potassium channels.   总被引:4,自引:0,他引:4  
Potassium channels are surprisingly modular proteins. Well-defined regions that determine functional properties such as ion conduction and gating have recently been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号