首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Commentary to: Tombola F, Ulbrich M, Isacoff I. The voltage-gated proton channel Hv1 has two pores, each controlled by one voltage sensor. Neuron 2008; 58:546-66.

Commentary to: Lee S-Y, Letts JA, MacKinnon R. Dimeric subunit stoichiometry of the human voltage-dependent proton channel Hv1. Proc Natl Acad Sci 2008; 105:7692-5.  相似文献   

2.
Oppermann M 《Cellular signalling》2004,16(11):1201-1210
CC chemokine receptor 5 (CCR5) is a seven-transmembrane, G protein-coupled receptor (GPCR) which regulates trafficking and effector functions of memory/effector T-lymphocytes, macrophages, and immature dendritic cells. It also serves as the main coreceptor for the entry of R5 strains of human immunodeficiency virus (HIV-1, HIV-2). Chemokine binding to CCR5 leads to cellular activation through pertussis toxin-sensitive heterotrimeric G proteins as well as G protein-independent signalling pathways. Like many other GPCR, CCR5 is regulated by agonist-dependent processes which involve G protein coupled receptor kinase (GRK)-dependent phosphorylation, beta-arrestin-mediated desensitization and internalization. This review discusses recent advances in the elucidation of the structure and function of CCR5, as well as the complex mechanisms that regulate CCR5 signalling and cell surface expression.  相似文献   

3.
Human apolipoprotein E (apoE) is a member of the family of soluble apolipoproteins. Through its interaction with members of the low-density lipoprotein receptor family, apoE has a key role in lipid transport both in the plasma and in the central nervous system. Its three common structural isoforms differentially affect the risk of developing atherosclerosis and neurodegenerative disorders, including Alzheimer's disease. Because the function of apoE is dictated by its structure, understanding the structural properties of apoE and its isoforms is required both to determine its role in disease and for the development of therapeutic strategies.  相似文献   

4.
Our understanding of plant potassium transport has increased in the past decade through the application of molecular biological techniques. In this review, recent work on inward and outward rectifying K(+) channels as well as high affinity K(+) transporters is described. Through the work on inward rectifying K(+) channels, we now have precise details on how the structure of these proteins determines functional characteristics such as ion conduction, pH sensitivity, selectivity and voltage sensing. The physiological function of inward rectifying K(+) channels in plants has been clarified through the analysis of expression patterns and mutational analysis. Two classes of outward rectifying K(+) channels have now been cloned from plants and their initial characterisation is reviewed. The physiological role of one class of outward rectifying K(+) channel has been demonstrated to be involved in long distance transport of K(+) from roots to shoots. The molecular structure and function of two classes of energised K(+) transporters are also reviewed. The first class is energised by Na(+) and shares structural similarities with K(+) transport mechanisms in bacteria and fungi. Structure-function studies suggest that it should be possible to increase the K(+) and Na(+) selectivity of these transporters, which will enhance the salt tolerance of higher plants. The second class of K(+) transporter is comprised of a large gene family and appears to have a dual affinity for K(+). A suite of molecular techniques, including gene cloning, oocyte expression, RNA localisation and gene inactivation, is now being used to fully characterise the biophysical and physiological function of plants K(+) transport mechanisms.  相似文献   

5.
6.
Abstract

A large number of rice agronomic traits are complex, multi factorial and polygenic. As the mechanisms and genes determining grain size and yield are largely unknown, the identification of regulatory genes related to grain development remains a preeminent approach in rice genetic studies and breeding programs. Genes regulating cell proliferation and expansion in spikelet hulls and participating in endosperm development are the main controllers of rice kernel elongation and grain size. We review here and discuss recent findings on genes controlling rice grain size and the mechanisms, epialleles, epigenomic variation, and assessment of controlling genes using genome-editing tools relating to kernel elongation.  相似文献   

7.
8.
New insights into pectin methylesterase structure and function   总被引:12,自引:0,他引:12  
In bacteria, fungi and plants, pectin methylesterases are ubiquitous enzymes that modify the degree of methylesterification of pectins, which are major components of plant cell walls. Such changes in pectin structure are associated with changes in cellular adhesion, plasticity, pH and ionic contents of the cell wall and influence plant development and stress responses. In plants, pectin methylesterases belong to large multigene families, are regulated in a highly specific manner, and are involved in vegetative and reproductive processes, including wood and pollen formation, in addition to plant-pathogen interactions. Although, overall, protein structures are highly conserved between isoforms, recent data indicate that structural variations might be associated with the targeting and functions of specific pectin methylesterases.  相似文献   

9.
Transgenic animals that over- or underexpress a protein of interest have been used to study obesity development, prevention, and susceptibility to diet-induced obesity such as a high-fat diet. Several transgenic models are resistant to diet-induced obesity including those that overexpress the insulin-sensitive glucose transporter, GLUT4, in adipose tissue only. In this animal there is increased adipose tissue mass but the animal maintains its insulin sensitivity. The overexpression of lipoprotein lipase (LPL) in skeletal muscle and the elimination of a protein kinase A subunit both resulted in lean and obesity resistant animals. By directing the production of the diphtheria toxin A chain to adipose tissue only the resulting animals not only had less adipose tissue mass but were resistant to MSG-induced obesity. Conversely, transgenic models with decreased brown adipose tissue or its function have all resulted in obese animals, highlighting the importance of thermoregulation in body weight maintenance. The use of transgenic technology in the field of obesity has emphasized the regional differences among fat pads as well as the dissimilarity between genders in fuel metabolism. Several transgenic models have separated obesity from insulin resistance allowing the importance of each state to be studied individually. Results using transgenic animals have re-emphasized that obesity is a polygenic disease.  相似文献   

10.
Kinesin superfamily proteins (KIFs) are key players or 'hub' proteins in the intracellular transport system, which is essential for cellular function and morphology. The KIF superfamily is also the first large protein family in mammals whose constituents have been completely identified and confirmed both in silico and in vivo. Numerous studies have revealed the structures and functions of individual family members; however, the relationships between members or a perspective of the whole superfamily structure until recently remained elusive. Here, we present a comprehensive summary based on a large, systematic phylogenetic analysis of the kinesin superfamily. All available sequences in public databases, including genomic information from all model organisms, were analyzed to yield the most complete phylogenetic kinesin tree thus far, comprising 14 families. This comprehensive classification builds on the recently proposed standardized nomenclature for kinesins and allows systematic analysis of the structural and functional relationships within the kinesin superfamily.  相似文献   

11.
12.
New insights into the regulation of erythroid cells   总被引:2,自引:0,他引:2  
  相似文献   

13.
14.
Cholesteryl ester transfer protein (CETP) is important clinically and is the current target for new drug development. Its structure and mechanism of action has not been well understood. We have combined current new structural and functional methods to compare with relevant prior data. These analyses have led us to propose several steps in CETP's function at the molecular level, in the context of its interactions with lipoproteins, e.g., sensing, penetration, docking, selectivity, ternary complex formation, lipid transfer, and HDL dissociation. These new molecular insights improve our understanding of CETP's mechanisms of action.  相似文献   

15.
New insights into fish ion regulation and mitochondrion-rich cells   总被引:2,自引:0,他引:2  
Compared to terrestrial animals, fish have to cope with more-challenging osmotic and ionic gradients from aquatic environments with diverse salinities, ion compositions, and pH values. Gills, a unique and highly studied organ in research on fish osmoregulation and ionoregulation, provide an excellent model to study the regulatory mechanisms of ion transport. The present review introduces and discusses some recent advances in relevant issues of teleost gill ion transport and functions of gill ionocytes. Based on accumulating evidence, a conclusive model of NaCl secretion in gills of euryhaline teleosts has been established. Interpretations of results of studies on freshwater fish gill Na+/Cl- uptake mechanisms are still being debated compared with those for NaCl secretion. Current models for Na+/Cl- uptake are proposed based on studies in traditionally used model species. Many reported inconsistencies are claimed to be due to differences among species, various experimental designs, or acclimation conditions. Having the benefit of advanced techniques in molecular/cellular biology, functional genomics, and model animals, several new notions have recently been raised concerning relevant issues of Na+/Cl- uptake pathways. Several new windows have been opened particularly in terms of molecular mechanisms of ionocyte differentiation and energy metabolite transport between gill cells during environmental challenge.  相似文献   

16.
17.
P-type ATPases are amongst the most abundant enzymes that are responsible for active transport of ions across biological membranes. Within the last 5 years a detailed picture of the structure and function of these transport ATPases has emerged. Here, we report on the recent progress in elucidating the molecular mechanism of a unique, prokaryotic member of P-type ATPases, the Kdp-ATPase. The review focuses on the catalytic parts of the central subunit, KdpB. The structure of the nucleotide-binding domain was solved by NMR spectroscopy at high resolution and a model of the nucleotide-binding mode was presented. The nucleotide turned out to be 'clipped' into the binding pocket by a pi-pi interaction to F377 on one side and a cation-pi interaction to K395 on the other. The 395KGXXD/E motif and thus the nucleotide-binding mode seems to be conserved in all P-type ATPases, except the heavy metal-transporting (class IB) ATPases. Hence, it can be concluded that KdpB is currently misgrouped as class IA. Mutational studies on two highly conserved residues (D583 and K586) in the transmembrane helix 5 of KdpB revealed that they are indispensable in coupling ATP hydrolysis to ion translocation. Based on these results, two possible pathways for the reaction cycle are discussed.  相似文献   

18.
Water is probably the most important molecule in biology. It solvates molecules, all biochemical reactions occur in it and it is a major driving force in protein folding. Phospholipid membranes separate different water environments, but connections do exist between the different compartments. The integral membrane proteins (IMPs) form these connections. In the case of ions, IMPs form the passageways that regulate ion movement across the membrane. Structural information from three ion distinct channels are examined to see how these channels first select for and then control the movement of their target ions. This review focuses on how these channels select for target ions and control their movement while taking into account and using different properties of water. This includes the use of hydrophobic gates, mimicking the water environment, and controlling ions indirectly by controlling water.  相似文献   

19.
Water is probably the most important molecule in biology. It solvates molecules, all biochemical reactions occur in it and it is a major driving force in protein folding. Phospholipid membranes separate different water environments, but connections do exist between the different compartments. The integral membrane proteins (IMPs) form these connections. In the case of ions, IMPs form the passageways that regulate ion movement across the membrane. Structural information from three ion distinct channels are examined to see how these channels first select for and then control the movement of their target ions. This review focuses on how these channels select for target ions and control their movement while taking into account and using different properties of water. This includes the use of hydrophobic gates, mimicking the water environment, and controlling ions indirectly by controlling water.  相似文献   

20.
Light is essential for photosynthesis but excess light is hazardous as it may lead to the formation of reactive oxygen species. Photosynthetic organisms struggle to optimize light utilization and photosynthesis while minimizing photo-oxidative damage. Hereby light to heat dissipation via specialized proteins is a potent mechanism to acclimate toward excess light. In the green alga Chlamydomonas reinhardtii the expression of an ancient light-harvesting protein LHCSR3 enables cells to dissipate harmful excess energy. Herein we summarize newest insights into the function of LHCSR3 from C. reinhardtii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号