首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
p21(Cip1/WAF1) (p21), a p53-inducible protein, is a critical regulator of cell cycle and cell survival. p21 binds to and inhibits both the DNA synthesis regulator proliferating cell nuclear antigen and cyclin A/E-CDK2 complexes. Recently, p21 has also been shown to be a positive regulator of cell cycle progression as p21 is necessary for the assembly and activation of cyclin D1-CDK4/6 complexes. Furthermore, elevated p21 protein levels have been observed in various aggressive tumors as well as linked to chemoresistance. Here we demonstrate that p21 is directly phosphorylated by AKT/PKB, a survival kinase that is hyperactivated in many late stage tumors. Two sites (Thr(145) and Ser(146)) in the carboxyl terminus of p21 are phosphorylated by AKT/PKB in vitro and in vivo. Phosphorylation of Thr(145) inhibits PCNA binding, whereas phosphorylation of Ser(146) significantly increases p21 protein stability. Glioblastoma cell lines with activated AKT/PKB show enhanced p21 stability, and they are more resistant to taxol-mediated toxicity. Finally, AKT/PKB controls the assembly of cyclin D1-CDK4 complexes through modulation of p21 and cyclin D1 levels. These data imply that enhanced levels of p21 in tumors are due, in part, to phosphorylation by activated AKT/PKB. Furthermore, they suggest that one mechanism of AKT/PKB regulation of tumor cell survival and/or proliferation is to stabilize p21 protein.  相似文献   

2.
Previous studies from our laboratory showed that p21Cip1/WAF1 can be phosphorylated by Pim-1 kinase in vitro, implying that part of the function of Pim-1 might involve influencing the cell cycle. In the present study, site-directed mutagenesis and phosphorylated-specific antibodies were used as tools to identify the sites phosphorylated by Pim-1 and the consequences of this phosphorylation. What we found was that Pim-1 can efficiently phosphorylate p21 on Thr145 in vitro using recombinant protein and in vivo in intact cells. Unexpectedly, we found that Ser146 is a second site that is phosphorylated in vivo, but this phosphorylation event seems to be an indirect result of Pim-1 expression. More importantly, the consequences of phosphorylation of either Thr145 or Ser146 are distinct. When p21 is phosphorylated on Thr145, it localizes to the nucleus and results in the disruption of the association between proliferating cell nuclear antigen and p21. Furthermore, phosphorylation of Thr145 promotes stabilization of p21. On the other hand, when p21 is phosphorylated on Ser146, it localizes primarily in the cytoplasm and the effect of phosphorylation on stability is minimal. Cotransfection of wild-type Pim-1 with p21 increases the rate of proliferation compared with cotransfection of p21 with kinase-dead Pim-1. Knocking down Pim-1 expression greatly decreases the rate of proliferation of H1299 cells and their ability to grow in soft agar. These data suggest that Pim-1 overexpression may contribute to tumorigenesis in part by influencing the cellular localization and stability of p21 and by promoting cell proliferation.  相似文献   

3.
The molecular and biochemical mode of cell death of dopaminergic neurons in Parkinson's disease (PD) is uncertain. In an attempt at further clarification we studied the effects of 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), on dopaminergic PC12 cells. In humans and nonhuman primates MPTP/MPP+ causes a syndrome closely resembling PD. MPP+ toxicity is thought to be mediated by the block of complex I of the mitochondrial electron transport chain. Treatment of undifferentiated PC12 cells with MPP+ primarily inhibited proliferation of PC12 cells and secondarily led to cell death after the depletion of all energy substrates by glycolysis. This cell death showed no morphological characteristics of apoptosis and was not blocked by treatment with caspase inhibitors. The inhibition of cell growth was not dependent on an inhibition of complex I activity since MPP+ also inhibited cell proliferation in SH-SY5Y cells lacking mitochondrial DNA and complex I activity (p0 cells). As shown by flow cytometric analysis, MPP+ induced a block in the G0/G1 to S phase transition that correlated with increased expression of the cyclin-dependent kinase inhibitor p21(WAF1/Cip1) and growth arrest. Since treatment with 1 microM MPP+ caused apoptotic cell death in p21(WAF1/Cip1)-deficient (p21(-/-)) but not in parental (p21(+/+)) mouse embryo fibroblasts, our data suggest that in an early phase MPP+-induced p21(WAF1/Cip1) expression leads to growth arrest and prevents apoptosis until energy depletion finally leads to a nonapoptotic cell death.  相似文献   

4.
Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase   总被引:5,自引:0,他引:5  
The serine/threonine kinase, Pim-1, appears to be involved in regulating proliferation, differentiation and cell survival of lymphoid and myeloid cells. In this study, we have found that amino acid residues 140-147 (RKRRQTSM) at the C-terminal end of p21(Cip1/WAF1), a cyclin-dependent kinase (CDK) inhibitor, constitute an ideal phosphorylation consensus sequence for Pim-1. We demonstrate that Pim-1 efficiently phosphorylates this peptide sequence as well as the p21 protein in vitro. We also demonstrate by pull-down assay and by immunoprecipitation that Pim-1 associates with p21. During phorbol ester-induced differentiation of U937 cells, both Pim-1 and p21 expression levels increase with Pim-1 levels increasing in both the nucleus and cytoplasm while p21 remains primarily cytoplasmic. Co-transfection of wild type p21 with wild type Pim-1 results in cytoplasmic localization of p21 while co-transfection of wild type p21 with kinase dead Pim-1 results in nuclear localization of p21. Consistent with the results from the phosphoamino acid assay, Pim-1 phosphorylates transfected p21 only on Thr(145) in p21-deficient human fibroblasts and this phosphorylation event results in the cytoplasmic localization of p21. These findings demonstrate that Pim-1 associates with and phosphorylates p21 in vivo, which influences the subcellular localization of p21.  相似文献   

5.
p21WAF1/CIP1 is a critical regulator of cell cycle progression. However, the role of p21 in mitochondrial function remains poorly understood. In this study, we examined the effect of p21 deficiency on mitochondrial function in HCT116 human colon cancer cells. We found that there was a significant increase in the mitochondrial mass of p21?/? HCT116 cells, as measured by 10-N-nonyl-acridine orange staining, as well as an increase in the mitochondrial DNA content. In contrast, p53?/? cells had a mitochondrial mass comparable to that of wild-type HCT116 cells. In addition, the expression levels of the mitochondrial biogenesis regulators PGC-1α and TFAM and AMPK activity were also elevated in p21?/? cells, indicating that p21 deficiency induces the rate of mitochondrial biogenesis through the AMPK-PGC-1α axis. However, the increase in mitochondrial biogenesis in p21?/? cells did not accompany an increase in the cellular steady-state level of ATP. Furthermore, p21?/? cells exhibited significant proliferation impairment in galactose medium, suggesting that p21 deficiency induces a defect in the mitochondrial respiratory chain in HCT116 cells. Taken together, our results suggest that the loss of p21 results in an aberrant increase in the mitochondrial mass and in mitochondrial dysfunction in HCT116 cells, indicating that p21 is required to maintain proper mitochondrial mass and respiratory function.  相似文献   

6.
Amplification or overexpression of HER-2/neu in cancer cells confers resistance to apoptosis and promotes cell growth. The cellular localization of p21Cip1/WAF1 has been proposed to be critical either in promoting cell survival or in inhibiting cell growth. Here we show that HER-2/neu-mediated cell growth requires the activation of Akt, which associates with p21Cip1/WAF1 and phosphorylates it at threonine 145, resulting in cytoplasmic localization of p21Cip1/WAF1. Furthermore, blocking the Akt pathway with a dominant-negative Akt mutant restores the nuclear localization and cell-growth-inhibiting activity of p21Cip1/WAF1. Our results indicate that HER-2/neu induces cytoplasmic localization of p21Cip1/WAF1 through activation of Akt to promote cell growth, which may have implications for the oncogenic activity of HER-2/neu and Akt.  相似文献   

7.
8.
Cystathionine gamma-lyase (CSE) is a key enzyme in the trans-sulfuration pathway. CSE uses L-cysteine as a substrate to produce hydrogen sulfide (H2S). The CSE/H2S system has been shown to play an important role in regulating cellular functions in different systems. In the present study, we used CSE stably overexpressed HEK-293 cells to explore the effect of the CSE/H2S system on cell growth and proliferation. The overexpression of CSE resulted in increases in CSE mRNA levels, CSE proteins, and intracellular H2S production rates, as well as the inhibition of cell proliferation and DNA synthesis. These effects were accompanied by a sustained ERK activation and up-regulation of the cyclin-dependent kinase inhibitor p21Cip/WAK-1. Blocking the action of ERK with U0126 inhibited the induction of p21Cip/WAK-1, suggesting that ERK activation functions upstream of p21Cip/WAK-1 activation to initiate the CSE overexpression-induced cell growth inhibition. The antiproliferative effect of CSE is likely mediated by endogenously produced H2S because the H2S scavenger methemoglobin (10 microm) significantly decreased the H2S production rate and reversed the antiproliferative effect afforded by CSE. Exogenous H2S (100 microm) also inhibited cell proliferation. However, the other CSE-catalyzed products, ammonium and pyruvate, failed to inhibit cell proliferation. Methemoglobin also abolished the inhibitory effect of exogenous H2S on cell proliferation. Moreover, exogenous H2S induced a sustained ERK and p21Cip/WAK-1 activation. These findings support the hypothesis that endogenously produced H2S may play a fundamental role in cell proliferation and survival.  相似文献   

9.
10.
Liu W  Dai Q  Lu N  Wei L  Ha J  Rong J  Mu R  You Q  Li Z  Guo Q 《Biochimie et biologie cellulaire》2011,89(3):287-298
We recently established that LYG-202, a new flavonoid with a piperazine substitution, exerts an anti-tumor effect in vivo and in vitro. In the present study, we demonstrate that LYG-202 induces G1/S phase arrest and apoptosis in human colorectal carcinoma HCT-116 cells. Data showed that the blockade of the cell cycle was associated with increased p21(WAF1/Cip1) and Rb levels and reduced expression of cyclin D1, cyclin E, and CDK4. Moreover, PARP cleavage, activation of caspase-3, caspase-8, and caspase-9, and an increased ratio of Bax/Bcl-2 were detected in LYG-202-induced apoptosis. Additionally, activation of p53 resulted in the up-regulation of its downstream targets PUMA and p21(WAF1/Cip1), as well as the down-regulation of its negative regulator MDM2, suggesting that the p53 pathway may play a crucial role in LYG-202-induced cell cycle arrest and apoptosis. Furthermore, siRNA knockdown of p53 attenuated the G1 cell cycle arrest and apoptosis induced by LYG-202, as the effects of LYG-202 on up-regulation of p21(WAF1/Cip1) and down-regulation of Bcl-2 and pro-caspase-3 were partly inhibited in p53 siRNA transfected cells compared with control siRNA transfected cells. Collectively, these data indicate that LYG-202 exerts its anti-tumor potency by activating the p53-p21 pathway for G1/S cell cycle arrest and apoptosis in colorectal cancer cells.  相似文献   

11.
Bone-morphogenetic proteins (BMP)-2 and -7, multifunctional members of the transforming growth factor (TGF)-beta superfamily with powerful osteoinductive effects, cause cell cycle arrest in a variety of transformed cell lines by activating signaling cascades that involve several cyclin-dependent kinase inhibitors (CDKIs). CDKIs in the cip/kip family, p21(Cip1/Waf1) and p27(Kip1), have been shown to negatively regulate the G1 cyclins and their partner cyclin-dependent kinase proteins, resulting in BMP-mediated growth arrest. Bone morphogens have also been associated with antiproliferative effects in vascular tissue by unknown mechanisms. We now show that BMP-2-mediated inhibition of platelet-derived growth factor (PDGF)-stimulated human aortic smooth muscle cell (HASMC) proliferation is accompanied by increased levels of p21 protein. Antisense oligodeoxynucleotides specific for p21 attenuate BMP-2-induced inhibition of proliferation when transfected into HASMCs, demonstrating that BMP-2 inhibits PDGF-stimulated proliferation of HASMCs through induction of p21. Whether p21-mediated induction of cell cycle arrest by BMP-2 sets the stage for osteogenic differentiation of vascular smooth muscle cells, ultimately leading to vascular mineralization, remains to be investigated.  相似文献   

12.
Currently, some controversy exists regarding the precise role of 15-lipoxygenase-1 (15-LOX-1) in colorectal carcinogenesis and other aspects of cancer biology. The aim of this study was to evaluate the effect of 15-LOX-1 on p21 (Cip/WAF 1) expression and growth regulation in human colon carcinoma cells. The effect of 13-S-hydroxyoctadecadienoic acid (HODE), a product of 15-LOX-1, on p21 (Cip/WAF 1) expression was evaluated in Caco-2 cells treated with sodium butyrate (NaBT) and/or nordihydroguaiarectic acid (NDGA), a LOX inhibitor. The effect of transfecting HCT-116 cells with 15-LOX-1 was also examined. NaBT-induced p21 (Cip/WAF 1) expression was enhanced by treatment with NDGA and 13-S-HODE reversed NaBT-induced p21 (Cip/WAF 1) expression in Caco-2 cells. Overexpression of 15-LOX-1 induced extracellular signal-related kinase (ERK) 1/2 phosphorylation, decreased p21 (Cip/WAF 1) expression, and increased HCT-116 cell growth. Treatment with NDGA decreased ERK 1/2 phosphorylation, and increased p21 (Cip/WAF 1) expression in 15-LOX-1 overexpressing HCT-116 cells. Our experimental results support the hypothesis that 15-LOX-1 may have "pro-neoplastic" effects during the development of colorectal cancer.  相似文献   

13.
Tazarotene-induced gene 1 (TIG1) is considered to be a tumor suppressor gene that is highly expressed in normal or well-differentiated colon tissues, while downregulation of TIG1 expression occurs in poorly differentiated colorectal cancer (CRC) tissues. However, it is still unclear how TIG1 regulates the tumorigenesis of CRC. Polo-like kinases (Plks) are believed to play an important role in regulating the cell cycle. The performance of PLK2 in CRC is negatively correlated with the differentiation status of CRC tissues. Here, we found that PLK2 can induce the growth of CRC cells and that TIG1 can prevent PLK2 from promoting the proliferation of CRC cells. We also found that the expression of PLK2 in CRC cells was associated with low levels of Fbxw7 protein and increased expression of cyclin E1. When TIG1 was coexpressed with PLK2, the changes in Fbxw7/cyclin E1 levels induced by PLK2 were reversed. In contrast, silencing TIG1 promoted the proliferation of CRC, and when PLK2 was also silenced, the proliferation of CRC cells induced by TIG1 silencing was significantly inhibited. The above research results suggest that TIG1 can regulate the tumorigenesis of CRC by regulating the activity of PLK2.  相似文献   

14.
The cyclin-dependent kinase inhibitor p21(WAF1/Cip1) plays a central role in a spatial and temporal balance of epidermal keratinocyte proliferation and growth arrest. However, what controls p21 expression in keratinocytes remains uncertain. Hypoxia-inducible factor 1alpha (HIF-1alpha) does not only express a variety of genes essential for hypoxic adaptation, but also up-regulates p21 so as to slow down cell cycle under hypoxic conditions. In the present study, we examined the role of HIF-1alpha in p21-mediated growth arrest of keratinocyte. Keratinocyte proliferation was arrested in the G1 phase at a high cell density. p21 was also up-regulated in a cell density-dependent manner and was found to be highly expressed in epidermal keratinocytes of normal human skins. In addition, in the same specimens and cells, we noted robust HIF-1alpha expression. HIF-1alpha siRNAs inhibited p21 expression and released the G1 arrest. In vivo, moreover, the intradermal injection of HIF-1alpha siRNA attenuated p21 expression in rat epidermis and induced skin hyperplasia. Mechanistically, we propose that the production of mitochondrial reactive oxygen species and the activation of the MEK/ERK pathway are involved in the HIF-1alpha stabilization in keratinocytes. These results imply that HIF-1alpha functions as an up-stream player in the p21-mediated growth arrest of keratinocytes.  相似文献   

15.
16.
Lithium is the most widely prescribed mood stabilizer, but the precise molecular mechanisms underlying its therapeutic function are not yet fully elucidated. Recent preclinical and clinical evidence indicates its neuroprotective and neurotrophic effects. As a tight coupling of function and metabolism in the central nervous system between glial cells and neurons has recently been detected, lithium's effect on glial cells may participate also in the total beneficial effects of this drug. The aim of the present study was to analyze molecular mechanisms induced in human glioblastoma A1235 cells by the treatment with lithium, especially its influence on the expression of apoptosis-related genes. Lower levels of lithium (0.5 mmol/L and 2 mmol/L) did not cause any cytotoxicity or changes in the cell cycle phase distribution following 72 h incubation. However, a higher dose (20 mmol/L) was cytostatic for glioblastoma cells, and caused accumulation of cells in G2/M phase of the cell cycle. The treatment with lithium did not alter the levels of Bcl-2 or procaspase-3 and did not cleave PARP, but increased the levels of p21WAF/Cip1 and survivin. Thus, increased expression of p21WAF/Cip1 (a protein with antiapoptotic function), and survivin (a protein that supports the growth of cells by suppression of apoptosis and promotion of cell proliferation) may be the early events in the long-term cell response to lithium that are involved in the beneficial effects of this drug.  相似文献   

17.
18.
19.
20.
The molecular mechanisms mediating death receptor-induced caspase-independent necrotic cell death are still largely unknown. We have previously reported that NIH3T3 cells are sensitized by caspase inhibition to death receptor-induced cytotoxicity leading to a necrosis-like cell death. In addition, we have identified an important role of cell cycle progression for this sensitization effect. Here, we report that tumor necrosis factor-induced necrotic death is preceded by an upregulation of the cyclin-dependent kinase inhibitor p21(WAF1/Cip1). Increased expression of p21(WAF1/Cip1) occurs prior to cell death in the nucleus, where it binds to a cyclin-dependent kinase indicating its functionality. The use of specific pharmacological inhibitors revealed a partial involvement of p38 mitogen-activated protein kinase in the upregulation of p21(WAF1/Cip1). Inhibition of p21(WAF1/Cip1) upregulation prevents a previously observed delay of the cells in the G2/M phase of the cell cycle thereby augmenting, not inhibiting cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号