共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
植物尿苷二磷酸糖基转移酶超家族晶体结构 总被引:2,自引:0,他引:2
糖基转移酶(Glycosyltransferases,GTs)催化的糖基化反应几乎是植物中最为重要的反应。GTs家族1中的植物UGTs(UDP-dependent glycosyltransferases)成员主要运用尿苷二磷酸活化的糖作为糖基供体,因其成员众多、生物功能多样,仅仅通过序列比较和进化分析不能够精确预测其复杂的底物专一性和特有的催化机制,需要后续生化实验的进一步验证。文中主要总结了目前在蛋白结构数据库(Protein Data Bank,PDB)中报道的5种植物UGTs的晶体三维结构和定点突变功能研究进展。详细介绍了植物UGTs整体结构的特点以及蛋白与底物相互作用的细节,为更有效地生化定性UGTs以便深入理解底物专一性提供了有力的工具,从而为植物UGTs在酶工程和基因工程中的应用奠定基础。 相似文献
3.
The triazine dyes: Cibacron Blue 3GA, Reactive Red 120, Reactive Yellow 86, Reactive Green 19, Reactive Blue 4, Reactive Brown 10 inhibited the activity of a purified preparation of 1,6fucosyltransferase (GDP-L-fucose:N-acetyl -glucosaminide 6--L-fucosyltransferase, EC 2.4.1.68) from human blood platelets. Cibacron Blue 3GA and Reactive Red 120 were examined for the nature of the inhibition and both were found to be competitive inhibitors of the enzyme, with Ki=11[emsp4 ]M and 2[emsp4 ]M, respectively. The two dyes inhibited also serum glycosyltransferases: 1,2fucosyltransferase (GDP-L-fucose: -D-galactosyl-R2--L-fucosyltransferase, EC 2.4.1.69), 1,4galactosyltransferase (UDP-galactose: N-acetyl-D-glucosamine 4--D-galactosyltransferase, EC 2.4.1.90) and 1,3N-acetylglucosaminyltransferase (UDP-GlcNAc: 4--D-galactosyl-D-glucose). Cibacron Blue 3GA was a more effective inhibitor of the glycosyltransferases that use UDP-linked sugar donors than Reactive Red 120 while the latter was a stronger inhibitor of the fucosyltransferases that use GDP-linked donor. All four glycosyltransferases could be affinity purified on Cibacron Blue 3GA-Agarose columns. The order of elution of glycosyltransferases from the columns with solutions of 0.25–1.0[emsp4 ]M potassium iodide also depended upon the structure of nucleotide sugar donor, i.e. whether it contained UDP or GDP. Thus, triazine dyes should interact with the sugar donor binding sites of glycosyltransferases. The main advantages of the use of triazine dyes as affinity ligands for isolation of glycosyltransferases are their universal applicability regardless of enzyme specificity, low cost, and insensitivity to high concentration of other proteins present in the solution. 相似文献
4.
5.
6.
Ubiquitin: structures, functions, mechanisms 总被引:23,自引:0,他引:23
Ubiquitin is the founding member of a family of structurally conserved proteins that regulate a host of processes in eukaryotic cells. Ubiquitin and its relatives carry out their functions through covalent attachment to other cellular proteins, thereby changing the stability, localization, or activity of the target protein. This article reviews the basic biochemistry of these protein conjugation reactions, focusing on ubiquitin itself and emphasizing recent insights into mechanism and specificity. 相似文献
7.
8.
Internal repetition within proteins has been a successful strategem on multiple separate occasions throughout evolution. Such protein repeats possess regular secondary structures and form multirepeat assemblies in three dimensions of diverse sizes and functions. In general, however, internal repetition affords a protein enhanced evolutionary prospects due to an enlargement of its available binding surface area. Constraints on sequence conservation appear to be relatively lax, due to binding functions ensuing from multiple, rather than, single repeats. Considerable sequence divergence as well as the short lengths of sequence repeats mean that repeat detection can be a particularly arduous task. We also consider the conundrum of how multiple repeats, which show strong structural and functional interdependencies, ever evolved from a single repeat ancestor. In this review, we illustrate each of these points by referring to six prolific repeat types (repeats in beta-propellers and beta-trefoils and tetratricopeptide, ankyrin, armadillo/HEAT, and leucine-rich repeats) and in other less-prolific but nonetheless interesting repeats. 相似文献
9.
Fujii Y Numata S Nakamura Y Honda T Furukawa K Urano T Wiels J Uchikawa M Ozaki N Matsuo S Sugiura Y Furukawa K 《Glycobiology》2005,15(12):1257-1267
Biological functions of globo-series glycosphingolipids are not well understood. In this study, murine cDNAs of two glycosyltransferases responsible for the synthesis of globo-series glycolipids and mRNA expression of those genes were analyzed. Distribution of their products was also analyzed. Murine cDNAs for Gb3/CD77 synthase and Gb4 synthase predicted that both of them are type II membrane proteins with 348 and 331 amino acids, respectively. In northern blotting, Gb3/CD77 synthase gene was mainly expressed in kidney and lung but also detected in many other tissues. Gb4 synthase was expressed in brain, heart, kidney, liver, skin, and testis. In the immunohistological analysis, Gb3/CD77 was mainly expressed in the proximal tubules as revealed with coincidental expression with angiotensin-converting enzyme (ACE). In spleen, it was detected in pre-B cells in the peripheral region of the white pulp, as suggested with coincidental expression with CD10. It was also expressed on the endothelia of the alveolar capillaries in lung and on the sebaceous ducts aside of the hair follicles. Gb4 was also detected mainly on the proximal tubules in kidney and on the endothelia of the alveolar capillaries in lung as Gb3/CD77. But it was also detected on the epithelium of the bronchus, seminiferous tubules and tails of spermatozoa in testis, blood vessels of choroids plexus and endothelial cells in brain, and central and hepatoportal veins in liver. The expression patterns of two genes and their products almost corresponded with some exception. The results would provide essential information for the functional studies of globo-series glycolipids. 相似文献
10.
Takamatsu S Inoue N Katsumata T Nakamura K Fujibayashi Y Takeuchi M 《Biochemistry》2005,44(16):6343-6349
Many recombinant proteins developed or under development for clinical use are glycoproteins, and trials aimed at improving their bioactivity or pharmacokinetics in vivo by altering specific glycan structures are ongoing. For pharmaceuticals of glycoproteins, it is important to characterize and, if possible, control the glycosylation profile. However, the mechanism responsible for the regulation of sugar chain structures found on naturally occurring glycoproteins is still unclear. To clarify the relationship between glycosyltransferases and sugar chain branch structure, we estimated six glycosyltransferases' activities (N-acetylglucosaminyltransferase (GlcNAcTase)-I, -II, -III, -IV, -V, and beta-1,4-galactosyltransferase (GalT)) which control the branch formation on asparagine (Asn)-linked sugar chains in 18 human cancer cell lines derived from several tissues. To visualize the balance of glycosyltransferase activity associated with each cell line, we expressed the relative glycosyltransferase activity in comparison to the average activity among the cell lines. These cell lines were classified into five groups according to their relative glycosyltransferase balance and were termed GlcNAcTase-I/-II, GlcNAcTase-III, GlcNAcTase-IV, GlcNAcTase-V, and GalT. We also characterized the structures of Asn-linked sugar chains on the cell surface of representative cell lines of each group. The branching structure of cell surface sugar chains roughly corresponded to the glycosyltransferase balance. This finding suggests that, for the sugar chain structure remodeling of glycoproteins, attention should be focused on the glycosyltransferase balance of host cells before introducing exogenous glycosyltransferases or down-regulating the activity of intrinsic glycosyltransferases. 相似文献
11.
12.
Caspase inhibitors: viral, cellular and chemical 总被引:1,自引:0,他引:1
Caspases, key mediators of apoptosis, are a structurally related family of cysteine proteases that cleave their substrates at aspartic acid residues either to cause cell death or to activate cytokines as part of an immune response. They can be controlled upstream by the regulation of signals that lead to zymogen activation, or downstream by inhibitors that prevent them from reaching their substrates. This review specifically looks at caspase inhibitors as distinct from caspase regulators: those produced by the cell itself; those whose genes are carried by viruses; and artificial caspase inhibitors used for research and potentially as therapeutics. 相似文献
13.
Evaluation of deoxygenated oligosaccharide acceptor analogs as specific inhibitors of glycosyltransferases 总被引:4,自引:0,他引:4
O Hindsgaul K J Kaur G Srivastava M Blaszczyk-Thurin S C Crawley L D Heerze M M Palcic 《The Journal of biological chemistry》1991,266(27):17858-17862
The glycosyltransferases controlling the biosynthesis of cell-surface complex carbohydrates transfer glycosyl residues from sugar nucleotides to specific hydroxyl groups of acceptor oligosaccharides. These enzymes represent prime targets for the design of glycosylation inhibitors with the potential to specifically alter the structures of cell-surface glycoconjugates. With the aim of producing such inhibitors, synthetic oligosaccharide substrates were prepared for eight different glycosyltransferases. The enzymes investigated were: A, alpha(1----2, porcine submaxillary gland); B, alpha(1----3/4, Lewis); C, alpha(1----4, mung bean); D, alpha(1----3, Lex)-fucosyltransferases; E, beta(1----4)-galactosyltransferase; F, beta(1----6)-N-acetylglucosaminyltransferase V; G, beta(1----6)-mucin-N-acetylglucosaminyltransferase ("core-2" transferase); and H, alpha(2----3)-sialyltransferase from rat liver. These enzymes all transfer sugar residues from their respective sugar nucleotides (GDP-Fuc, UDP-Gal, UDP-GlcNAc, and CMP-sialic acid) with inversion of configuration at their anomeric centers. The Km values for their synthetic oligosaccharide acceptors were in the range of 0.036-1.3 mM. For each of these eight enzymes, acceptor analogs were next prepared where the hydroxyl group undergoing glycosylation was chemically removed and replaced by hydrogen. The resulting deoxygenated acceptor analogs can no longer be substrates for the corresponding glycosyltransferases and, if still bound by the enzymes, should act as competitive inhibitors. In only four of the eight cases examined (enzymes A, C, F, and G) did the deoxygenated acceptor analogs inhibit their target enzymes, and their Ki values (all competitive) remained in the general range of the corresponding acceptor Km values. No inhibition was observed for the remaining four enzymes even at high concentrations of deoxygenated acceptor analog. For these latter enzymes it is suggested that the reactive acceptor hydroxyl groups are involved in a critical hydrogen bond donor interaction with a basic group on the enzyme which removes the developing proton during the glycosyl transfer reaction. Such groups are proposed to represent logical targets for irreversible covalent inactivation of this class of enzyme. 相似文献
14.
Allatoregulatory peptides either inhibit (allatostatins) or stimulate (allatotropins) juvenile hormone (JH) synthesis by the corpora allata (CA) of insects. However, these peptides are pleitropic, the regulation of JH biosynthesis is not their only function. There are currently three allatostatin families (A-, B-, and C-type allatostatins) that inhibit JH biosynthesis, and two structurally unrelated allatotropins. The C-type allatostatin, characterised by its blocked N-terminus and a disulphide bridge between its two cysteine residues, was originally isolated from Manduca sexta. This peptide exists only in a single from in Lepidoptera and is the only peptide that has been shown to inhibit JH synthesis by the CA in vitro in this group of insects. The C-type allatostatin also inhibits spontaneous contractions of the foregut. The A-type allatostatins, which exist in multiple forms in a single insect, have also been characterised from Lepidoptera. This family of peptides does not appear to have any regulatory effect on JH biosynthesis, but does inhibit foregut muscle contractions. Two structurally unrelated allatotropins stimulate JH biosynthesis in Lepidoptera. The first was identified in M. sexta (Manse-AT) and occurs in other moths. The second (Spofr AT2) has only been identified in Spodoptera frugiperda. Manduca sexta allatotropin also stimulates heart muscle contractions and gut peristalsis, and inhibits ion transport across the midgut of larval M. sexta. The C-terminal (amide) pentapeptide of Manse-AT is important for JH biosynthesis activity. The most active conformation of Manse-AS requires the disulphide bridge, although the aromatic residues also have a significant effect on biological activity. Both A- and C-type allatostatins and Manse-AT are localised in neurosecretory cells of the brain and are present in the corpora cardiaca, CA and ventral nerve cord, although variations in localisation exist in different moths and at different stages of development. The presence of Manse-AS and Manse-AT in the CA correlates with the biological activity of these peptides on JH biosynthesis. There is currently no explanation for the presence of A-type allatostatins in the CA. The three peptide types are also co-localised in neurosecretory cells of the frontal ganglion, and are present in the recurrent nerve that supplies the muscles of the gut, particularly the crop and stomodeal valve, in agreement with their role in the regulation of gut peristalsis. There is also evidence that they are expressed in the midgut and reproductive tissues. 相似文献
15.
The inhibition of glycosyltransferases was studied using uridine monophosphate derivatives and uridine diphosphate sugar analogs. Modification in the nucleoside portion caused selective inhibition of glycosyltransferases. 相似文献
16.
17.
Lise Boon Estefania Ugarte-Berzal Jennifer Vandooren 《Critical reviews in biochemistry and molecular biology》2020,55(2):111-165
AbstractProteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications. 相似文献
18.
19.
Sarah A. Osmani Author VitaeAuthor Vitae Birger Lindberg Møller Author Vitae 《Phytochemistry》2009,70(3):325-1473
Plant family 1 UDP-dependent glycosyltransferases (UGTs) catalyze the glycosylation of a plethora of bioactive natural products. In Arabidopsis thaliana, 120 UGT encoding genes have been identified. The crystal-based 3D structures of four plant UGTs have recently been published. Despite low sequence conservation, the UGTs show a highly conserved secondary and tertiary structure. The sugar acceptor and sugar donor substrates of UGTs are accommodated in the cleft formed between the N- and C-terminal domains. Several regions of the primary sequence contribute to the formation of the substrate binding pocket including structurally conserved domains as well as loop regions differing both with respect to their amino acid sequence and sequence length. In this review we provide a detailed analysis of the available plant UGT crystal structures to reveal structural features determining substrate specificity. The high 3D structural conservation of the plant UGTs render homology modeling an attractive tool for structure elucidation. The accuracy and utility of UGT structures obtained by homology modeling are discussed and quantitative assessments of model quality are performed by modeling of a plant UGT for which the 3D crystal structure is known. We conclude that homology modeling offers a high degree of accuracy. Shortcomings in homology modeling are also apparent with modeling of loop regions remaining as a particularly difficult task. 相似文献
20.
Different glycosyltransferases are differentially processed for secretion, dimerization, and autoglycosylation 总被引:2,自引:0,他引:2
El-Battari A Prorok M Angata K Mathieu S Zerfaoui M Ong E Suzuki M Lombardo D Fukuda M 《Glycobiology》2003,13(12):941-953
Modification of Golgi glycosyltransferases, such as formation of disulfide-bonded dimers and proteolytical release from cells as a soluble form, are important processes to regulate the activity of glycosyltransferases. To better understand these processes, six glycosyltransferases were selected on the basis of the donor sugars, including two N-acetylglucosaminyltransferases, core 1 beta1,3-N-acetylglucosaminyltransferase (C1-beta3GnT) and core 2 beta1,6-N-acetylglucosaminyltransferase (C2GnT-I); two fucosyltransferases, alpha1,2-fucosyltransferase-I (FucT-I) and alpha1,3-fucosyltransferase-VII (FucT-VII); and two sialyltransferases, alpha2,3-sialyltransferase-I (ST3Gal-I) and alpha2,6-sialyltransferase-I (ST6Gal-I). These enzymes were fused with enhanced green fluorescence protein and stably expressed in Chinese hamster ovary cells. Spectrofluorimetric detection and immunoblotting analyses showed that all of these glycosyltransferases except FucT-VII were secreted in the medium. By examining dimers formed in cells and culture media, we found that all of the enzymes, except ST3Gal-I, form a combination of monomers and dimers in cells, whereas the molecules released in the media are either exclusively monomers (C2GnT-I and ST6Gal-I), dimers (FucT-I) or a mixture of both (C1-beta3GnT). These results indicate that dimerization does not always lead to Golgi retention. Analysis of the N-glycosylation status of the enzymes revealed that the secreted proteins are generally more heavily N-glycosylated and sialylated than their membrane-associated counterparts, suggesting that the proteolytic cleavage occurs before the glycosylation is completed. Using FucT-I and ST6Gal-I as a model, we also show that these glycosyltransferases are able to perform autoglycosylation in the dimeric forms. These results indicate that different glycosyltranferases differ significantly in dimerization, proteolytic digestion and secretion, and autoglycosylation. These results strongly suggest that disulfide-bonded dimerization and secretion differentially plays a role in the processing and function of different glycosyltransferases in the Golgi apparatus. 相似文献