首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite years of intensive research, breast cancer remains the leading cause of death in women worldwide. New technologies including oncolytic virus therapies, virus, and phage display are among the most powerful and advanced methods that have emerged in recent years with potential applications in cancer prevention and treatment. Oncolytic virus therapy is an interesting strategy for cancer treatment. Presently, a number of viruses from different virus families are under laboratory and clinical investigation as oncolytic therapeutics. Oncolytic viruses (OVs) have been shown to be able to induce and initiate a systemic antitumor immune response. The possibility of application of a multimodal therapy using a combination of the OV therapy with immune checkpoint inhibitors and cancer antigen vaccination holds a great promise in the future of cancer immunotherapy. Display of immunologic peptides on bacterial viruses (bacteriophages) is also increasingly being considered as a new and strong cancer vaccine delivery strategy. In phage display immunotherapy, a peptide or protein antigen is presented by genetic fusions to the phage coat proteins, and the phage construct formulation acts as a protective or preventive vaccine against cancer. In our laboratory, we have recently tested a few peptides (E75, AE37, and GP2) derived from HER2/neu proto-oncogene as vaccine delivery modalities for the treatment of TUBO breast cancer xenograft tumors of BALB/c mice. Here, in this paper, we discuss the latest advancements in the applications of OVs and bacterial viruses display systems as new and advanced modalities in cancer immune therapeutics.  相似文献   

2.
溶瘤病毒(oncolytic virus,OVs)历经百年发展,应用于当前最具潜力的肿瘤免疫疗法。它主要是天然的或基因修饰的DNA病毒和RNA病毒。近年来随着基因工程技术的飞跃发展,经基因改造的溶瘤病毒在肿瘤治疗领域取得很大进展,很多不同类型的病毒(包括单纯疱疹病毒、腺病毒、痘病毒、麻疹病毒和呼肠孤病毒等)正处于临床前研究、临床试验阶段或已批准上市,显示了良好的安全性和临床疗效。普遍认为溶瘤病毒靶向杀伤肿瘤细胞是通过选择性在肿瘤细胞内自我复制,最终裂解肿瘤细胞,同时可激发机体的免疫应答反应,进而增强抗肿瘤免疫效果,靶向杀伤肿瘤细胞而对正常细胞无明显影响。运用基因重组技术将溶瘤病毒与免疫检查点相结合以及肿瘤免疫联合疗法的兴起和不断进步,使溶瘤病毒的应用更加广泛,但仍存在病毒靶向性、安全性、给药途径等瓶颈问题。本文综述了溶瘤病毒的发展史、病毒分类、不同类型溶瘤病毒产品的临床研究进展、溶瘤病毒靶向杀伤肿瘤的免疫学机制及未来发展面临的挑战与展望等。  相似文献   

3.
Butt AQ  Miggin SM 《Proteomics》2012,12(13):2127-2138
Oncovirus, synonymously called a 'tumour virus', is a virus that can cause cancer. An oncolytic virus preferentially infects the host's cancer cells and lyses them, causing tumour destruction, and is thus referred to as a 'cancer killing virus'. With an estimated 11% of cancer-associated deaths caused by oncoviruses and the possibility that many cancers may be treated by using oncolytic viruses, the role of viruses in cancer may be viewed as a double-edged sword. A total of seven human cancer viruses have been identified as oncoviruses, having been associated with various cancers. Conversely, a large number of oncolytic viruses have shown great potential towards the treatment of certain types of cancer. Proteomics has now been applied towards understanding the complex interplay that exists between oncoviruses and the immune responses that serve to prevent oncoviral diseases. This review attempts to summarise the neoplastic potential of human tumour associated viruses and associated vaccine successes. The potential use of oncolytic viruses for the therapeutic intervention of cancer will also be discussed. Finally, this review will discuss the enormous potential of proteomics technology in the field of oncovirology.  相似文献   

4.
There are more than 500 kinases in the human genome, many of which are oncogenic once constitutively activated. Fortunately, numerous hyperactive kinases are druggable, and several targeted small molecule kinase inhibitors have demonstrated impressive clinical benefits in cancer treatment. However, their often cytostatic rather than cytotoxic effect on cancer cells, and the development of resistance mechanisms, remain significant limitations to these targeted therapies. Oncolytic viruses are an emerging class of immunotherapeutic agents with a specific oncotropic nature and excellent safety profile, highlighting them as a promising alternative to conventional therapeutic modalities. Nonetheless, the clinical efficacy of oncolytic virotherapy is challenged by immunological and physical barriers that limit viral delivery, replication, and spread within tumours. Several of these barriers are often associated with oncogenic kinase activity and, in some cases, worsened by the action of oncolytic viruses on kinase signaling during infection. What if inhibiting these kinases could potentiate the cancer-lytic and anti-tumour immune stimulating properties of oncolytic virotherapies? This could represent a paradigm shift in the use of specific kinase inhibitors in the clinic and provide a novel therapeutic approach to the treatment of cancers. A phase III clinical trial combining the oncolytic Vaccinia virus Pexa-Vec with the kinase inhibitor Sorafenib was initiated. While this trial failed to show any benefits over Sorafenib monotherapy in patients with advanced liver cancer, several pre-clinical studies demonstrate that targeting kinases combined with oncolytic viruses have synergistic effects highlighting this strategy as a unique avenue to cancer therapy. Herein, we review the combinations of oncolytic viruses with kinase inhibitors reported in the literature and discuss the clinical opportunities that represent these pharmacoviral approaches.  相似文献   

5.
近年来,随着国内外几款溶瘤病毒制剂的相继上市,溶瘤病毒疗法成为肿瘤免疫治疗的焦点。溶瘤病毒可选择性感染并裂解肿瘤细胞,同时释放肿瘤相关抗原激活机体的抗肿瘤免疫反应,达到杀伤肿瘤细胞和抑制肿瘤生长的目的。溶瘤病毒对肿瘤的靶向杀伤作用决定了其安全性和溶瘤效果。为了开发出安全高效的溶瘤病毒,目前主要采用以下策略:利用某些病毒载体对肿瘤细胞的天然靶向性,使溶瘤病毒选择性地在肿瘤细胞内复制并杀伤肿瘤细胞;或者对病毒基因组进行缺失和插入等修饰,通过靶向肿瘤细胞特异性表面受体、胞内信号通路或者肿瘤微环境等提高溶瘤病毒的肿瘤靶向性。其中,肿瘤微环境中的低氧状态、新血管生成以及免疫抑制状态等都可成为溶瘤病毒的靶点。而溶瘤病毒通过表达细胞因子和免疫检查点抑制剂,或者与CAR-T细胞联合作用,靶向调节肿瘤微环境中免疫抑制状态,成为提高溶瘤病毒肿瘤靶向性的常用方法。本文将对以上溶瘤病毒靶向治疗肿瘤策略的研究进展进行综述。  相似文献   

6.
Measles virus (MV) immunosuppression is due to infection of SLAM-positive immune cells, whereas respiratory shedding and virus transmission are due to infection of nectin4-positive airway epithelial cells. The vaccine lineage MV strain Edmonston (MV-Edm) acquired an additional tropism for CD46 which is the basis of its oncolytic specificity. VSVFH is a vesicular stomatitis virus (VSV) encoding the MV-Edm F and H entry proteins in place of G. The virus spreads faster than MV-Edm and is highly fusogenic and a potent oncolytic. To determine whether ablating nectin4 tropism from VSVFH might prevent shedding, increasing its safety profile as an oncolytic, or might have any effect on CD46 binding, we generated VSVFH viruses with H mutations that disrupt attachment to SLAM and/or nectin4. Disruption of nectin4 binding reduced release of VSVFH from the basolateral side of differentiated airway epithelia composed of Calu-3 cells. However, because nectin4 and CD46 have substantially overlapping receptor binding surfaces on H, disruption of nectin4 binding compromised CD46 binding and greatly diminished the oncolytic potency of these viruses on human cancer cells. Thus, our results support continued preclinical development of VSVFH without ablation of nectin4 binding.  相似文献   

7.
单纯疱疹病毒是肿瘤生物治疗中常用的病毒载体之一,可复制性单纯疱疹病毒以其溶瘤效率高、特异性好、可行性强成为近年来研究的热点。其中对溶瘤性单纯疱疹病毒突变株G207的研究开展得早,其溶瘤效果、靶向性及安全性都得到了确认,这也带动了可复制性单疱病毒应用的发展,目前已研究出多种溶瘤单纯疱疹病毒突变株。本文就近几年可复制性单纯疱疹病毒在抗肿瘤方面的研究现状加以综述,以探讨其临床治疗肿瘤的潜在价值及可行性。  相似文献   

8.
Cancer immunotherapy is a new therapeutic strategy for cancer treatment that targets tumors by improving or restoring immune system function. Therapies targeting immune checkpoint molecules have exerted potent anti-tumor effects and prolonged the overall survival rate of patients. However, only a small number of patients benefit from the treatment. Oncolytic viruses exert anti-tumor effects by regulating the tumor microenvironment and affecting multiple steps of tumor immune circulation. In this study, we engineered two oncolytic viruses that express mouse anti-PD-1 antibody (VT1093M) or mouse IL-12 (VT1092M). We found that both oncolytic viruses showed significant anti-tumor effects in a murine CT26 colon adenocarcinoma model. Importantly, the intratumoral combined injection with VT1092M and VT1093M inhibited growth of the primary tumor, prevented growth of the contralateral untreated tumor, produced a vaccine-like response, activated antigen-specific T cell responses and prolonged the overall survival rate of mice. These results indicate that combination therapy with the engineered oncolytic virus may represent a potent immunotherapy strategy for cancer patients, especially those resistant to PD-1/PD-L1 blockade therapy.  相似文献   

9.
Lung cancer is one of the malignant tumors that seriously threaten human health worldwide, while the covid-19 virus has become people's nightmare after the coronavirus pandemic. There are too many similarities between cancer cells and viruses, one of the most significant is that both of them are our enemies. The strategy to take the advantage of the virus to beat cancer cells is called Oncolytic virotherapy. When immunotherapy represented by immune checkpoint inhibitors has made remarkable breakthroughs in the clinical practice of lung cancer, the induction of antitumor immunity from immune cells gradually becomes a rapidly developing and promising strategy of cancer therapy. Oncolytic virotherapy is based on the same mechanisms that selectively kill tumor cells and induce systemic anti-tumor immunity, but still has a long way to go before it becomes a standard treatment for lung cancer. This article provides a comprehensive review of the latest progress in oncolytic virotherapy for lung cancer, including the specific mechanism of oncolytic virus therapy and the main types of oncolytic viruses, and the combination of oncolytic virotherapy and existing standard treatments. It aims to provide new insights and ideas on oncolytic virotherapy for lung cancer.  相似文献   

10.
Lytic virus infection results in production of a virus progeny and lysis of the infected cell. Tumor cells are usually more sensitive to virus infection. Studies indicate that viral oncolysis provides a promising alternative approach to cancer therapy. The ability of viruses to selectively kill cancer cells is long known, but construction of virus variants with an improved therapeutic potential was impossible until recent advances in virus and cell molecular biology and the development of modern methods for directed modification of viruses. Adenoviruses are one of the best studied models of oncolytic viruses. These DNA viruses are convenient for genetic manipulation and show minimal pathogenicity. The review summarizes the data on the directions and approaches to generation of highly efficient variants of oncolytic adenoviruses. The approaches include introduction of directed genetic modifications into the virus genome, accelerated selection of oncolytic virus variants following treatment with mutagens, the use of adenoviruses as vectors to introduce therapeutic gene products, optimization of viral delivery systems, minimization of the negative effects from the host immune system, etc. The dynamic development of studies in the field holds promise that many variants of oncolytic adenoviruses will find clinical application in the nearest future.  相似文献   

11.
12.
Vesicular stomatitis virus (VSV), a negative-sense single-stranded-RNA rhabdovirus, is an extremely promising oncolytic agent for cancer treatment. Since oncolytic virotherapy is moving closer to clinical application, potentially synergistic combinations of oncolytic viruses and molecularly targeted antitumor agents are becoming a meaningful strategy for cancer treatment. Mitogen-activated protein kinase (MAPK) inhibitors have been shown to impair liver cell proliferation and tumor development, suggesting their potential use as therapeutic agents for hepatocellular carcinoma (HCC). In this work, we show that the impairment of MAPK in vitro did not interfere with the oncolytic properties of VSV in HCC cell lines. Moreover, the administration of MAPK inhibitors did not restore the responsiveness of HCC cells to alpha/beta interferon (IFN-α/β). In contrast to previous reports, we show that JNK inhibition by the inhibitor SP600125 is not responsible for VSV attenuation in HCC cells and that this compound acts by causing a posttranslational modification of the viral glycoprotein.  相似文献   

13.
The study of measles virus (MeV) as a cancer immunotherapeutic was prompted by clinical observations of leukemia and lymphoma regressions in patients following measles virus infection in the 1970s and 1980s. Since then, numerous preclinical studies have confirmed the oncolytic activity of MeV vaccine strains as well as their potential to promote long-lasting tumor-specific immune responses. Early clinical data indicate that some of these effects may translate to the treatment of cancer patients. In this review, we provide a structured summary of current evidence for the anti-tumor immune activity of oncolytic MeV. We start with an overview of MeV oncolysis and MeV-induced immunogenic cell death. Next, we relate findings on MeV-mediated activation of antigen-presenting cells, T cell priming and effector mechanisms to the cancer immunity cycle. We discuss additional factors in the tumor microenvironment which are modulated by MeV treatment as well as the role of anti-viral immunity. Based on these findings, we highlight avenues for rational enhancement of oncolytic MeV immunotherapy by vector engineering. We further point to advantages and drawbacks of experimental models and propose areas warranting promising research. Lastly, we review the available immunomonitoring data from several Phase I clinical trials. While this review presents data for MeV, the concepts and principles introduced herein apply to other oncolytic viruses, providing a framework to assess novel cancer immunotherapies.  相似文献   

14.
Replication-selective oncolytic viruses constitute a rapidly evolving and new treatment platform for cancer. Gene-deleted viruses have been engineered for tumor selectivity, but these gene deletions also reduce the anti-cancer potency of the viruses. We have identified an E1A mutant adenovirus, dl922-947, that replicates in and lyses a broad range of cancer cells with abnormalities in cell-cycle checkpoints. This mutant demonstrated reduced S-phase induction and replication in non-proliferating normal cells, and superior in vivo potency relative to other gene-deleted adenoviruses. In some cancers, its potency was superior to even wild-type adenovirus. Intravenous administration reduced the incidence of metastases in a breast tumor xenograft model. dl922-947 holds promise as a potent, replication-selective virus for the local and systemic treatment of cancer.  相似文献   

15.
溶瘤病毒是一类天然的或经过基因编辑后能特异性在肿瘤细胞中复制、发挥抗肿瘤效应的病毒。溶瘤病毒的抗肿瘤效应主要通过以下两个方面实现:a. 直接的溶瘤效应,例如诱导肿瘤细胞发生凋亡、促使细胞裂解等;b. 溶瘤病毒作为一种激活免疫的药物,通过诱导机体产生强烈的抗肿瘤免疫,达到清除肿瘤的目的。溶瘤病毒疗法作为免疫疗法的一个重要分支,因其具有肿瘤特异性,便于基因改造等优点,成为该领域的研究热点。截至目前,处在临床实验招募和完成阶段的溶瘤病毒疗法虽然已达100多例,但已批准上市的产品仅有4款。溶瘤疗法应用于肿瘤治疗领域还面临着诸多挑战。因此,系统性回顾溶瘤病毒的改造策略,深入了解溶瘤病毒的生物学过程显得尤为必要。病毒依赖于宿主完成复制、增殖过程,其生物学过程与宿主的代谢状态密切相关。肿瘤的标志性特征为代谢重编程,即肿瘤细胞重新构建代谢网络以满足指数生长和增殖的需求并防止氧化应激的过程。通常包括糖酵解的增强和谷氨酰胺分解,以及线粒体功能和氧化还原稳态的变化。通过靶向宿主代谢重编程增强溶瘤病毒的复制、溶瘤能力是当前极具前景的方向。本文综述溶瘤病毒的临床应用现状及与代谢相关的调控机制,为进一步开发新型溶瘤病毒以及联用方式提供新的思路。  相似文献   

16.
Therapeutic application of stem cells and oncolytic viruses in cancer treatment has rapidly increased in the last decade. Oncolytic viruses are considered as a new class of anticancer agents because of their ability to selectively infect and destroy cancer cells. Furthermore, regarding the specific migratory capacity of stem cells, they can be used as carriers or vectors targeting metastatic cancer. Promising results have been reported regarding the use of stem cells and oncolytic viruses as a therapeutic approach for the treatment of metastatic cancer. The present review aimed to determine the approaches involved in the use of the tumor-homing capacity of stem cells for cancer treatment.  相似文献   

17.
Metastatic prostate cancer is often associated with either primary or intractable castration-resistant prostate cancer (CRPC), thus justifying the search for entirely new ways of treatment. Oncolytic viruses are able to selectively induce the death of tumor cells without affecting normal cells. A murine Sendai virus has potential to be used as an oncolytic agent. However, tumors vary in their sensitivity to different viruses, prompting us to attempt to identify corresponding biomarkers that reflect the interaction of cancer cells and the virus. Here, we show that the sensitivity of primary prostatic adenocarcinoma cell lines to Sendai virus strain (SeVM) vary substantially. Using quantitative PCR, we evaluated expression levels of genes that encode RIG-1-like and Toll-like receptors (TLRs) in cell lines and showed that the levels of mRNAs that encode TLR3 and TLR7 correlate with a degree of sensitivity of the cells to Sendai virus. The lines with lower levels of TLR3 and TLR7 expression are more sensitive to the virus.  相似文献   

18.
The use of oncolytic viruses forms an appealing approach for cancer treatment. On the one hand the viruses replicate in, and kill, tumor cells, leading to their intra-tumoral amplification. On the other hand the viral infection will activate virus-directed immune responses, and may trigger immune responses directed against tumor cells and tumor antigens. To date, a wide variety of oncolytic viruses is being developed for use in cancer treatment. While the development of oncolytic viruses has often been initiated by researchers in academia and other public institutions, a large majority of the final product development and the testing of these products in clinical trials is industry led. As a consequence relatively few pre-clinical and clinical studies evaluated different oncolytic viruses in competitive side-by-side preclinical or clinical studies. In this review we will summarize the steps and considerations essential in the development and characterization of oncolytic viruses, and describe our multidisciplinary academic consortium, which involves a dozen departments in three different Dutch universities, collaborating in the development of oncolytic viruses. This consortium has the ambition to develop a small series of oncolytic viruses and to evaluate these in various cancers.  相似文献   

19.
There is an urgent need for innovative therapeutic strategies to treat aggressive metastatic cancers that are incurable with standard therapeutic approaches. Novel treatment strategies like oncolytic virotherapy have led, in some cases, to impressive effects on disease progression in human trials, suggesting that approval of an oncolytic virus therapeutic is on the horizon. While combinations of oncolytic viruses with small molecules are already being tested and have shown promise, we propose that even greater therapeutic synergies could be achieved through rational design of complementary virus therapeutics. In this review, we discuss rational chemical and biological combination strategies to enhance oncolytic virotherapy highlighting the promising combination of vaccinia and vesicular stomatitis oncolytic viruses.  相似文献   

20.
Oncolytic virus immunotherapy is rapidly gaining interest in the field of immunotherapy against cancer. The minimal toxicity upon treatment and the dual activity of direct oncolysis and immune activation make therapy with oncolytic viruses (OVs) an interesting treatment modality. The safety and efficacy of several OVs have been assessed in clinical trials and, so far, the Food and Drug Administration (FDA) has approved one OV. Unfortunately, most treatments with OVs have shown suboptimal responses in clinical trials, while they appeared more promising in preclinical studies, with tumours reducing after immune cell influx. In several clinical trials with OVs, parameters such as virus replication, virus-specific antibodies, systemic immune responses, immune cell influx into tumours and tumour-specific antibodies have been studied as predictors or correlates of therapy efficacy. In this review, these studies are summarized to improve our understanding of the determinants of the efficacy of OV therapies in humans and to provide insights for future developments in the viro-immunotherapy treatment field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号