首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Canonical Wnt signaling supports the formation and maintenance of stem and cancer stem cells. Recent studies have elucidated epigenetic mechanisms that control pluripotency and stemness, and allow a first assessment how embryonic and tissue stem cells are generated and maintained, and how Wnt signaling might be involved. The core of this review highlights the roles of Wnt signaling in stem and cancer stem cells of tissues such as skin, intestine and mammary gland. Lastly, we refer to the characterization of novel and powerful inhibitors of canonical Wnt signaling and describe attempts to bring these compounds into preclinical and clinical studies.  相似文献   

3.
《Cellular signalling》2014,26(3):570-579
Signaling initiated by secreted glycoproteins of the Wnt family regulates many aspects of embryonic development and it is involved in homeostasis of adult tissues. In the gastrointestinal (GI) tract the Wnt pathway maintains the self-renewal capacity of epithelial stem cells. The stem cell attributes are conferred by mutual interactions of the stem cell with its local microenvironment, the stem cell niche. The niche ensures that the threshold of Wnt signaling in the stem cell is kept in physiological range. In addition, the Wnt pathway involves various feedback loops that balance the opposing processes of cell proliferation and differentiation. Today, we have compelling evidence that mutations causing aberrant activation of the Wnt pathway promote expansion of undifferentiated progenitors and lead to cancer.The review summarizes recent advances in characterization of adult epithelial stem cells in the gut. We mainly focus on discoveries related to molecular mechanisms regulating the output of the Wnt pathway. Moreover, we present novel experimental approaches utilized to investigate the epithelial cell signaling circuitry in vivo and in vitro. Pivotal aspects of tissue homeostasis are often deduced from studies of tumor cells; therefore, we also discuss some latest results gleaned from the deep genome sequencing studies of human carcinomas of the colon and rectum.  相似文献   

4.
Dvorak P  Dvorakova D  Hampl A 《FEBS letters》2006,580(12):2869-2874
Cancer stem cells are cancer cells that originate from the transformation of normal stem cells. The most important property of any stem cell is the ability to self-renew. Through this property, there are striking parallels between normal stem cells and cancer stem cells. Both cell types share various markers of “stemness”. In particular, normal stem cells and cancer stem cells utilize similar molecular mechanisms to drive self-renewal, and similar signaling pathways may induce their differentiation.The fibroblast growth factor 2 (FGF-2) pathway is one of the most significant regulators of human embryonic stem cell (hESC) self-renewal and cancer cell tumorigenesis. Here we summarize recent data on the effects of FGF-2 and its receptors on hESCs and leukemic stem/progenitor cells. Also, we discuss the similarities of these findings with stem cell renewal and differentiation phenotypes.  相似文献   

5.

Background

The intricate regulation of several signaling pathways is essential for embryonic development and adult tissue homeostasis. Cancers commonly display aberrant activity within these pathways. A population of cells identified in several cancers, termed cancer stem cells (CSCs) show similar properties to normal stem cells and evidence suggests that altered developmental signaling pathways play an important role in maintaining CSCs and thereby the tumor itself.

Scope of review

This review will focus on the roles of the Notch, Wnt and Hedgehog pathways in the brain, breast and colon cancers. We describe the roles these pathways play in normal tissue homeostasis through the regulation of stem cell fate in these three tissues, and the experimental evidence indicating that the role of these pathways in cancers of these is directly linked to CSCs.

Major conclusions

A large body of evidence is accumulating to indicate that the deregulation of Notch, Wnt and Hedgehog pathways play important roles in both normal and cancer stem cells. We are only beginning to understand how these pathways interact, how they are coordinated during normal development and adult tissue homeostasis, and how they are deregulated during cancer. However, it is becoming increasingly clear that if we are to target CSCs therapeutically, it will likely be necessary to develop combination therapies.

General significance

If CSCs are the driving force behind tumor maintenance and growth then understanding the molecular mechanisms regulating CSCs is essential. Such knowledge will contribute to better targeted therapies that could significantly enhance cancer treatments and patient survival. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

6.
Breast cancer angiogenesis is elicited and regulated by a number of factors including the Notch signaling. Notch receptors and ligands are expressed in breast cancer cells as well as in the stromal compartment and have been implicated in carcinogenesis. Signals exchanged between neighboring cells through the Notch pathway can amplify and consolidate molecular differences, which eventually dictate cell fates. Notch signaling and its crosstalk with many signaling pathways play an important role in breast cancer cell growth, migration, invasion, metastasis and angiogenesis, as well as cancer stem cell (CSC) self-renewal. Therefore, significant attention has been paid in recent years toward the development of clinically useful antagonists of Notch signaling. Better understanding of the structure, function and regulation of Notch intracellular signaling pathways, as well as its complex crosstalk with other oncogenic signals in breast cancer cells will be essential to ensure rational design and application of new combinatory therapeutic strategies. Novel opportunities have emerged from the discovery of Notch crosstalk with inflammatory and angiogenic cytokines and their links to CSCs. Combinatory treatments with drugs designed to prevent Notch oncogenic signal crosstalk may be advantageous over λ secretase inhibitors (GSIs) alone. In this review, we focus on the more recent advancements in our knowledge of aberrant Notch signaling contributing to breast cancer angiogenesis, as well as its crosstalk with other factors contributing to angiogenesis and CSCs.  相似文献   

7.
Advanced salivary gland mucoepidermoid carcinoma (MEC) is a relentless cancer that exhibits resistance to conventional chemotherapy. As such, treatment for patients with advanced MEC is tipically radical surgery and radiotherapy. Facial disfigurement and poor quality of life are frequent treatment challenges, and many patients succumb to loco-regional recurrence and/or metastasis. We know that cancer stem-like cells (CSC) drive MEC tumorigenesis. The current study tests the hypothesis that MEC CSC are sensitive to therapeutic inhibition of mTOR. Here, we report a correlation between the long-term clinical outcomes of 17 MEC patients and the intratumoral expression of p-mTOR (p = 0.00294) and p-S6K1 (p = 0.00357). In vitro, we observed that MEC CSC exhibit constitutive activation of the mTOR signaling pathway (i.e., mTOR, AKT, and S6K1), unveiling a potential strategy for targeted ablation of these cells. Using a panel of inhibitors of the mTOR pathway, i.e., rapamycin and temsirolimus (mTOR inhibitors), buparlisib and LY294002 (AKT inhibitors), and PF4708671 (S6K1 inhibitor), we observed consistently dose-dependent decrease in the fraction of CSC, as well as inhibition of secondary sphere formation and self-renewal in three human MEC cell lines (UM-HMC-1,-3A,-3B). Notably, therapeutic inhibition of mTOR with rapamycin or temsirolimus induced preferential apoptosis of CSC, when compared to bulk tumor cells. In contrast, conventional chemotherapeutic drugs (cisplatin, paclitaxel) induced preferential apoptosis of bulk tumor cells and accumulation of CSC. In vivo, therapeutic inhibition of mTOR with temsirolimus caused ablation of CSC and downregulation of Bmi-1 expression (major inducer of stem cell self-renewal) in MEC xenografts. Transplantation of MEC cells genetically silenced for mTOR into immunodeficient mice corroborated the results obtained with temsirolimus. Collectively, these data demonstrated that mTOR signaling is required for CSC survival, and unveiled the therapeutic potential of targeting the mTOR pathway for elimination of highly tumorigenic cancer stem-like cells in salivary gland mucoepidermoid carcinoma.Subject terms: Cancer stem cells, Cancer stem cells, Head and neck cancer, Oral cancer  相似文献   

8.
Cancer stem cells (CSCs) need to survive cancer treatments with a specific end goal to provide new, more differentiated, metastatic-prone cancerous cells. This happens through diverse signals delivered within the tumor microenvironment where ample evidence indicates that altered developmental signaling pathways play an essential role in maintaining CSCs and accordingly the survival and the progression of the tumor itself. This review summarizes findings on the immunobiological properties of CSCs as compared with cancerous non-stem cells involving the expression of immunological molecules, cytokines and tumor antigens as well as the roles of the Notch, Wnt and Hedgehog pathways in the brain, breast and colon CSCs. We concluded that if CSCs are the main driving force behind tumor support and growth then understanding the molecular mechanisms and the immunological properties directing these cells for immune tolerance is of great clinical significance. Such knowledge will contribute to designing better targeted therapies that could prevent tumor recurrence and accordingly significantly improve cancer treatments and patient survival.  相似文献   

9.
Over the past decade, the Hippo signaling cascade has been linked to organ size regulation in mammals. Indeed, modulation of the Hippo pathway can have potent effects on cellular proliferation and/or apoptosis and a deregulation of the pathway often leads to tumor development. Importantly, emerging evidence indicates that the Hippo pathway can modulate its effects on tissue size by the regulation of stem and progenitor cell activity. This role has recently been associated with the central position of the pathway in sensing spatiotemporal or mechanical cues, and translating them into specific cellular outputs. These results provide an attractive model for how the Hippo cascade might sense and transduce cellular ‘neighborhood’ cues into activation of tissue-specific stem or progenitors cells. A further understanding of this process could allow the development of new therapies for various degenerative diseases and cancers. Here, we review current and emerging data linking Hippo signaling to progenitor cell function.  相似文献   

10.
Molecular Biology Reports - There is ample evidence to suggest that vascular endothelial growth factor (VEGF) is a potent mitogen factor in vasculogenesis and angiogenesis and that blockade of...  相似文献   

11.
吴海歌  吴晨  姚子昂  高晨慧  李倩 《生命科学》2014,(10):1067-1072
肿瘤干细胞是指存在于肿瘤组织中的具有干细胞特性,即能够多向分化和自我更新的一类细胞群。随着肿瘤干细胞概念的提出,乳腺癌干细胞成为当今科研领域的一个研究热点。因此,了解如何分选乳腺癌干细胞及如何维持其"干性"对治疗及预防乳腺癌具有至关重要的意义。主要从乳腺癌干细胞分选、相关信号通路、上皮-间充质转换(EMT)等方面进行综述。  相似文献   

12.
Significant correlations between obesity and incidence of various cancers have been reported. Obesity, considered a mild inflammatory process, is characterized by a high level of secretion of several cytokines from adipose tissue. These molecules have disparate effects, which could be relevant to cancer development. Among the inflammatory molecules, leptin, mainly produced by adipose tissue and overexpressed with its receptor (Ob-R) in cancer cells is the most studied adipokine. Mutations of leptin or Ob-R genes associated with obesity or cancer are rarely found. However, leptin is an anti-apoptotic molecule in many cell types, and its central roles in obesity-related cancers are based on its pro-angiogenic, pro-inflammatory and mitogenic actions. Notably, these leptin actions are commonly reinforced through entangled crosstalk with multiple oncogenes, cytokines and growth factors. Leptin-induced signals comprise several pathways commonly triggered by many cytokines (i.e., canonical: JAK2/STAT; MAPK/ERK1/2 and PI-3K/AKT1 and, non-canonical signaling pathways: PKC, JNK and p38 MAP kinase). Each of these leptin-induced signals is essential to its biological effects on food intake, energy balance, adiposity, immune and endocrine systems, as well as oncogenesis. This review is mainly focused on the current knowledge of the oncogenic role of leptin in breast cancer. Additionally, leptin pro-angiogenic molecular mechanisms and its potential role in breast cancer stem cells will be reviewed. Strict biunivocal binding-affinity and activation of leptin/Ob-R complex makes it a unique molecular target for prevention and treatment of breast cancer, particularly in obesity contexts.  相似文献   

13.
14.
15.

Background

The discovery of markers to identify the intestinal stem cell population and the generation of powerful transgenic mouse models to study stem cell physiology have led to seminal discoveries in stem cell biology.

Scope of review

In this review we give an overview of the current knowledge in the field of intestinal stem cells (ISCs) highlighting the most recent progress on markers defining the ISC population and pathways governing intestinal stem cell maintenance and differentiation. Furthermore we review their interaction with other stem cell related pathways. Finally we give an overview of alteration of these pathways in human inflammatory gastrointestinal diseases.

Major conclusions

We highlight the complex network of interactions occurring among different pathways and put in perspective the many layers of regulation that occur in maintaining the intestinal homeostasis.

General significance

Understanding the involvement of ISCs in inflammatory diseases can potentially lead to new therapeutic approaches to treat inflammatory GI pathologies such as IBD and celiac disease and could reveal the molecular mechanisms leading to the pathogenesis of dysplasia and cancer in inflammatory chronic conditions. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

16.
The Ras signaling pathway plays a predominant role during development and controls diverse biological process in all eukaryotic cells. It is a member of the large family of GTPases proteins that binds and hydrolyzes GTP. Ras is a lipid-anchored protein on the intracellular membrane compartments, and cycles between inactive GDP-bound and the signaling competent GTP-bound conformation. Studies have demonstrated Ras to be a central regulator in signal transduction pathways responding to diverse extracellular and intracellular stimuli. Much progress has been made towards delineating specific genes involved in the process of pluripotency and differentiation of stem cells. Here, we discuss recent aspects of Ras signaling pathways in mediating stem cell properties.  相似文献   

17.
The Wnt signaling pathway was originally uncovered as one of the prototype developmental signaling cascades in invertebrates as well as in vertebrates. The first indication that Wnt signaling also plays a role in the adult animal came from the study of the intestine of Tcf-4 (Tcf7L2) knockout mice. The gastrointestinal epithelium continuously self-renews over the lifetime of an organism and is, in fact, the most rapidly self-renewing tissue of the mammalian body. Recent studies indicate that Wnt signaling plays a central role in the biology of gastrointestinal stem cells. Furthermore, mutational activation of the Wnt cascade is the principle cause of colon cancer.  相似文献   

18.
19.
Relationships between stem cells and cancer stem cells   总被引:12,自引:0,他引:12  
Stem cells have been shown to exist in a variety of tissues. Recent studies have characterized stem cell gene expression patterns, phenotypes, and potential therapeutic uses. One of the most important properties of stem cells is that of self renewal. This raises the possibility that some of the clinical properties of human tumors may be due to transformed stem cells. Similar signaling pathways may regulate self renewal in normal and transformed stem cells. These rare transformed stem cells may drive the process of tumorigenesis due to their potential for self renewal. There are important ramifications for clinical cancer treatment if the growth of solid tumors is at least partially dependent on a cancer stem cell population. In the cancer stem cell model, tumor recurrence may be due to the non-targeted stem cell compartment repopulating the tumor. If cancer stem cells can be prospectively identified and isolated, it should be possible to identify therapies that will selectively target these cells.  相似文献   

20.
This review discusses the various regulatory charac-teristics of microRNAs that are capable of generating widespread changes in gene expression via post translational repression of many mRNA targets and control self-renewal, differentiation and division of cells. It controls the stem cell functions by controlling a wide range of pathological and physiological processes, including development, differentiation, cellular proliferation, programmed cell death, oncogenesis and metastasis. Through either mRNA cleavage or translational repression, miRNAs alter the expression of their cognate target genes; thereby modulating cellular pathways that affect the normal functions of stem cells, turning them into cancer stem cells, a likely cause of relapse in cancer patients. This present review further emphasizes the recent discoveries on the functional analysis of miRNAs in cancer metastasis and implications on miRNA based therapy using miRNA replacement or anti-miRNA technologies in specific cancer stem cells that are required to establish their efficacy in controlling tumorigenic potential and safe therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号