首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
A major event in mammalian male sex determination is the induction of the testis determining factor Sry and its downstream gene Sox9. The current study provides one of the first genome wide analyses of the downstream gene binding targets for SRY and SOX9 to help elucidate the molecular control of Sertoli cell differentiation and testis development. A modified ChIP-Chip analysis using a comparative hybridization was used to identify 71 direct downstream binding targets for SRY and 109 binding targets for SOX9. Interestingly, only 5 gene targets overlapped between SRY and SOX9. In addition to the direct response element binding gene targets, a large number of atypical binding gene targets were identified for both SRY and SOX9. Bioinformatic analysis of the downstream binding targets identified gene networks and cellular pathways potentially involved in the induction of Sertoli cell differentiation and testis development. The specific DNA sequence binding site motifs for both SRY and SOX9 were identified. Observations provide insights into the molecular control of male gonadal sex determination.  相似文献   

5.
6.
The Sox (Sry-type HMG box) genes encode a group of proteins characterized by the existence of an SRY (sex-determining region on Y chromosome) box, a 79 amino acid motif that encodes an HMG (high mobility group) domain which can bind and bend DNA, which is the only part in SRY that is conserved between species. The Sox gene family functions in many aspects in embryogenesis, including testis development, CNS neurogenesis, oligodendrocyte development, chondrogenesis, neural crest cell development and other respects. The Sox gene family was originally identified through homology with Sry. The Sry gene is the mammalian testis-determining gene. It functions to open the testis determination pathway directly and close the ovary pathway indirectly. Sry and Sox9 are the most important two genes expressed during testis determination. Besides, researchers have found that Sox8 and Sox9 have functions in the male fertility maintenance after birth. In this review, information was evaluated from mouse or from human if not mentioned otherwise.  相似文献   

7.
8.
9.
Sox genes encode proteins related to each other, and to the sex determining gene Sry, by the presence of a DNA binding motif known as the HMG domain. Although HMG domains can bind to related DNA sequences, Sox gene products may achieve target gene specificity by binding to preferred target sequences or by interacting with specific partner proteins. To assess their functional similarities, we replaced the HMG box of Sry with the HMG box of Sox3 or Sox9 and tested whether these constructs caused sex reversal in XX mice. Our results indicate that such chimeric transgenes can functionally replace Sry and elicit development of testis cords, male patterns of gene expression, and elaboration of male secondary sexual characteristics. This implies that chimeric SRY proteins with SOX HMG domains can bind to and regulate SRY target genes and that potential SRY partner factor interactions are not disrupted by HMG domain substitutions. genesis 28:111-124, 2000.  相似文献   

10.
11.
12.
13.
14.
Previous studies have shown that Sox3 is expressed in nascent neuroprogenitor cells and is functionally required in mammals for development of the dorsal telencephalon and hypothalamus. However, Sox3 expression during embryonic and adult neurogenesis has not been examined in detail. Using a SOX3-specific antibody, we show that murine SOX3 expression is maintained throughout telencephalic neurogenesis and is restricted to progenitor cells with neuroepithelial and radial glial morphologies. We also demonstrate that SOX3 is expressed within the adult neurogenic regions and is coexpressed extensively with the neural stem cell marker SOX2 indicating that it is a lifelong marker of neuroprogenitor cells. In contrast to the telencephalon, Sox3 expression within the developing hypothalamus is upregulated in developing neurons and is maintained in a subset of differentiated hypothalamic cells through to adulthood. Together, these data show that Sox3 regulation is region-specific, consistent with it playing distinct biological roles in the dorsal telencephalon and hypothalamus.  相似文献   

15.
The control of access of SOX proteins to their nuclear target genes is a powerful strategy to activate or repress complex genetic programs. The sub-cellular targeting sequences of SOX proteins are concentrated within the DNA binding motif, the HMG (for high mobility group) domain. Each SOX protein displays two different nuclear localization signals located at the N-terminal and C-terminal part of their highly conserved DNA binding domain. The N-terminal nuclear localization signal binds calmodulin and is potentially regulated by intracellular calcium signalling, while the C-terminal nuclear localization signal, which binds importin-β, responds to other signalling pathways such as cyclic AMP/protein kinase A. Mutations inducing developmental disorders like sex reversal have been reported in both NLSs of SRY, interfering with its nuclear localization and suggesting that both functional nuclear localization signal are required for its nuclear activity. A nuclear export signal is also present in the HMG box of SOX proteins. Group E SOX proteins harbour a perfect consensus nuclear export signal sequence in contrast to all other SOX proteins, which display only imperfect ones. However, observations made during mouse embryonic development suggest that non-group E SOX proteins could also be regulated by a nuclear export mechanism. The presence of nuclear localization and nuclear export signal sequences confers nucleocytoplasmic shuttling properties to SOX proteins, and suggests that cellular events regulated by SOX proteins are highly dynamic.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号