首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micromanagers of malignancy: role of microRNAs in regulating metastasis   总被引:4,自引:0,他引:4  
It has become evident that cancer pathogenesis involves, among other macromolecules, a class of small regulatory RNAs named microRNAs, and that microRNA expression profiles are associated with prognosis and therapeutic outcome in several human cancers. Although the oncogenic or tumor-suppressing functions of several microRNAs have been characterized, the mechanistic roles played by microRNAs specifically in mediating metastasis have been addressed only recently. In this review, we focus on our emerging understanding of the contributions of microRNAs to malignant progression, specifically their functions in mediating tumor invasion and metastasis. These findings illuminate the molecular basis of metastasis and begin to connect small-RNA discoveries to the development of novel clinical biomarkers and therapeutic targets in neoplastic diseases.  相似文献   

2.
microRNAs have emerged as the central player in gene expression regulation and have been considered as potent cancer biomarkers for early disease diagnosis. Direct microRNA detection without amplification and labeling is highly desired. Here we present a rapid, sensitive and selective microRNA detection method based on the base stacking hybridization coupling with time-resolved fluorescence technology. Other than planar microarrays, magnetic beads are used as reaction platforms. In this method, one universal tag is used to report all microRNA targets. Its specificity allows for discrimination between microRNAs differing by a single nucleotide, and between precursor and mature microRNAs. This method also provides a high sensitivity down to 20 fM. Moreover, the full protocol can be completed in about 3 h starting from total RNA.  相似文献   

3.
MicroRNAs have been known to regulate almost all physiological and pathological processes by suppressing their target genes. In humans, more than 1000 microRNAs have been identified, each of which targets dozens or even hundreds of genes. Facing this huge repertoire of microRNA targeting, it is important to identify which microRNAs are active, i.e., down-regulating their targets, in specific physiological or pathological conditions. Predicting active microRNAs is different from predicting microRNA targets because the authentic target genes of a microRNA are often not directly and solely regulated by that microRNA, leading to inconsistent expression changes between the microRNA and its true targets. Several computational programs have been proposed to predict the activity of a microRNA from the expressions of its target genes. These programs performed well when being applied on the expression data obtained from distinct tissue types or from experiments that transfect a microRNA into cells (i.e., non-physiological). But the performance of microRNA activity prediction is not clear on the expression data from the same tissue type in two physiological conditions, e.g., liver tissues from cancer patients and healthy people. In this work, we evaluate the performance of two microRNA activity prediction programs using seven expression data sets, all of which compare samples in two physiological conditions, as well as propose a new approach that predicts microRNA activity with an accuracy of over 80%. Unlike current methods, which predict active microRNAs by comparing two groups of samples, e.g., tumor versus normal, our new approach compares each diseased sample with all the samples in the control group. In other words, it can predict the microRNA activity of a person. In this work, this new application is named to predict “personalized microRNA activity”.  相似文献   

4.
微小RNA(microRNA、miRNA)与胃癌的发生发展可通过调控其靶基因参与的信号传导通路,影响胃癌的发生、侵袭和转移等过程,发挥着类似于癌基因或抑癌基因的作用。目前,已发现多种microR—NA与胃癌关系密切,包括通过调节周期蛋白依赖性蛋白激酶(Cdk)表达影响胃癌细胞增殖的miR-106b-93~25家族、miR-222—221家族和抑制高迁移率族蛋白A2(HMGA2)基因表达抑制胃癌细胞转移的miR-129和let-一7miRNA家族等。另有研究表明,miR-d21和miR-31检测阳性率显著高于血清CEA,可能成为新的胃癌肿瘤标志物。miR-15b和miR-16与胃癌多药耐药的关系也说明microRNA可能成为胃癌治疗新的靶点。  相似文献   

5.
Changes in microRNA expression have been detected in vitro in influenza infected cells, yet little is known about them in patients. microRNA profiling was performed on whole blood of H1N1 patients to identify signature microRNAs to better understand the gene regulation involved and possibly improve diagnosis. Total RNA extracted from blood samples of influenza infected patients and healthy controls were subjected to microRNA microarray. Expression profiles of circulating microRNAs were altered and distinctly different in influenza patients. Expression of highly dysregulated microRNAs were validated using quantitative PCR. Fourteen highly dysregulated miRNAs, identified from the blood of influenza infected patients, provided a clear distinction between infected and healthy individuals. Of these, expression of miR-1260, -26a, -335*, -576-3p, -628-3p and -664 were consistently dysregulated in both whole blood and H1N1 infected cells. Potential host and viral gene targets were identified and the impact of microRNA dysregulation on the host proteome was studied. Consequences of their altered expression were extrapolated to changes in the host proteome expression. These highly dysregulated microRNAs may have crucial roles in influenza pathogenesis and are potential biomarkers of influenza.  相似文献   

6.
microRNAs have emerged as powerful regulators of many biological processes, and their expression in many cancer tissues has been shown to correlate with clinical parameters such as cancer type and prognosis. Present in a variety of biological fluids, microRNAs have been described as a ‘gold mine’ of potential noninvasive biomarkers. Release of microRNA content of blood cells upon hemolysis dramatically alters the microRNA profile in blood, potentially affecting levels of a significant number of proposed biomarker microRNAs and, consequently, accuracy of serum or plasma-based tests. Several methods to detect low levels of hemolysis have been proposed; however, a direct comparison assessing their sensitivities is currently lacking. In this study, we evaluated the sensitivities of four methods to detect hemolysis in serum (listed in the order of sensitivity): measurement of hemoglobin using a Coulter® AcT diff™ Analyzer, visual inspection, the absorbance of hemoglobin measured by spectrophotometry at 414 nm and the ratio of red blood cell-enriched miR-451a to the reference microRNA miR-23a-3p. The miR ratio detected hemolysis down to approximately 0.001%, whereas the Coulter® AcT diff™ Analyzer was unable to detect hemolysis lower than 1%. The spectrophotometric method could detect down to 0.004% hemolysis, and correlated with the miR ratio. Analysis of hemolysis in a cohort of 86 serum samples from cancer patients and healthy controls showed that 31 of 86 (36%) were predicted by the miR ratio to be hemolyzed, whereas only 8 of these samples (9%) showed visible pink discoloration. Using receiver operator characteristic (ROC) analyses, we identified absorbance cutoffs of 0.072 and 0.3 that could identify samples with low and high levels of hemolysis, respectively. Overall, this study will assist researchers in the selection of appropriate methodologies to test for hemolysis in serum samples prior to quantifying expression of microRNAs.  相似文献   

7.
8.
9.
10.
microRNA expression signatures can differentiate normal and breast cancer tissues and can define specific clinico-pathological phenotypes in breast tumors. In order to further evaluate the microRNA expression profile in breast cancer, we analyzed the expression of 667 microRNAs in 29 tumors and 21 adjacent normal tissues using TaqMan Low-density arrays. 130 miRNAs showed significant differential expression (adjusted P value = 0.05, Fold Change = 2) in breast tumors compared to the normal adjacent tissue. Importantly, the role of 43 of these microRNAs has not been previously reported in breast cancer, including several evolutionary conserved microRNA*, showing similar expression rates to that of their corresponding leading strand. The expression of 14 microRNAs was replicated in an independent set of 55 tumors. Bioinformatic analysis of mRNA targets of the altered miRNAs, identified oncogenes like ERBB2, YY1, several MAP kinases, and known tumor-suppressors like FOXA1 and SMAD4. Pathway analysis identified that some biological process which are important in breast carcinogenesis are affected by the altered microRNA expression, including signaling through MAP kinases and TP53 pathways, as well as biological processes like cell death and communication, focal adhesion and ERBB2-ERBB3 signaling. Our data identified the altered expression of several microRNAs whose aberrant expression might have an important impact on cancer-related cellular pathways and whose role in breast cancer has not been previously described.  相似文献   

11.
12.
During the recent few years, microRNAs emerged as key molecules in the regulation of mammalian cell functions. It was also shown that their altered expression can promote pathologic conditions, such as cancer and other common diseases. Because environmental exposure to biological, chemical or physical agents may be responsible for human diseases, including cancer, uncovering relationships between exposure to environmental carcinogens and expression of microRNAs may help to disclose early mechanisms of disease and it may potentially lead to the development of useful indicators of toxic exposure or novel biomarkers for carcinogenicity testing. The unique expression profile of microRNAs in different types and at different stages of cancer coupled to their remarkable stability in tissues and in serum/plasma suggests that these little molecules may find application as sensitive biomarkers. This review will concentrate on the alterations in microRNA expression in response to environmental factors in relation to the risk of developing liver cancer.  相似文献   

13.
Since the discovery of circulating microRNAs (miRNAs) in body fluids, an increasing number of studies have focused on their potential as non-invasive biomarkers and as therapeutic targets or tools for many diseases, particularly for cancers. Because of their stability, miRNAs are easily detectable in body fluids. Extracellular miRNAs have potential as biomarkers for the prediction and prognosis of cancer. Moreover, they also enable communication between cells within the tumor microenvironment, thereby influencing tumorigenesis. In this review, we summarize the progresses made over the past decade regarding circulating miRNAs, from the development of detection methods to their clinical application as biomarkers and therapeutic tools for cancer. We also discuss the advantages and limitations of different detection methods and the pathways of circulating miRNAs in cell-cell communication, in addition to their clinical pharmacokinetics and toxicity in human organs. Finally, we highlight the potential of circulating miRNAs in clinical applications for cancer.  相似文献   

14.
MicroRNA is a special type of regulatory molecules modulating gene expression. Circulating microRNAs found in blood and other biological body fluids are now considered as potential biomarkers of human pathology. Quantitative changes of particular microRNAs have been recognized in many oncological diseases and other disorders. A recently developed method of droplet digital PCR (ddPCR) possesses a number of advantages making this method the most suitable for verification and validation of perspective microRNA markers of various human pathologies. These advantages include high accuracy and reproducibility of microRNA quantification as well as possibility of direct high-throughput determination of the absolute number of microRNA copies within a wide dynamic range. The present review considers microRNA biogenesis, the origin of circulating microRNAs, and methods used for their quantification. The special technical features of ddPCR, which make this method especially attractive for studying microRNAs as biomarkers of human pathologies and for basic research devoted to aspects of gene regulation by microRNA molecules, are also discussed.  相似文献   

15.
Research has shown that microRNAs are promising biomarkers that can be used to promote a more accurate diagnosis of cancer. In this study, we developed an integrated multi-step selection process to analyze available high-throughput datasets to obtain information on microRNAs as cancer biomarkers. Applying this approach to the microRNA expression profiles of prostate cancer and the datasets in The Cancer Genome Atlas Data Portal, we identified miRNA-182, miRNA-200c and miRNA-221 as possible biomarkers for prostate cancer. The associations between the expressions of these three microRNAs with clinical parameters as well as their diagnostic capability were studied. Several online databases were used to predict the target genes of these three microRNAs, and the results were confirmed by significant statistical correlations. Comparing with the other 18 types of cancers listed in The Cancer Genome Atlas Data Portal, we found that the combination of both miRNA-182 and miRNA-200c being up-regulated and miRNA-221 being down-regulated only happens in prostate cancer. This provides a unique biological characteristic for prostate cancer that can potentially be used for diagnosis based on tissue testing. In addition, our study also revealed that these three microRNAs are associated with the pathological status of prostate cancer.  相似文献   

16.
17.
The realization that microRNAs are intimately linked to cancer pathogenesis has spawned an explosion of research activity in recent years. Their presence is not merely predictive of tumor origin and behavior, they are causally linked to the emergence and development of cancer by acting as oncogenes or tumor suppressors. The understanding of the functional consequences of altered microRNA expression in cancer is progressing rapidly, even though the prediction of microRNA targets is still a hit and miss process. MicroRNAs may not act primarily by strongly reducing the expression of a few prominent cancer-regulatory genes, but by influencing the properties of the network of which these regulators are a central part. By coordinately regulating many genes, microRNAs are exquisitely suited to act as stabilizers of networks and to prevent extreme variations in phenotype due to intrinsic and extrinsic disturbances. Many advanced tumors show defects in microRNA expression and processing, which could increase phenotypic variability within tumors. This allows small subsets of cells with altered characteristics to emerge, which can have grave consequences as typically a small fraction of tumor cells is responsible for metastasis and treatment resistance, and ultimately treatment failure. Investigating microRNAs from the perspective of master regulators of network stability in cancer calls for new experimental approaches and may help to understand causes of cancer heterogeneity and disease progression.  相似文献   

18.
19.
Defining the aggressiveness and growth rate of a malignant cell population is a key step in the clinical approach to treating tumor disease. The correct grading of breast cancer (BC) is a fundamental part in determining the appropriate treatment. Biological variables can make it difficult to elucidate the mechanisms underlying BC development. To identify potential markers that can be used for BC classification, we analyzed mRNAs expression profiles, gene copy numbers, microRNAs expression and their association with tumor grade in BC microarray-derived datasets. From mRNA expression results, we found that grade 2 BC is most likely a mixture of grade 1 and grade 3 that have been misclassified, being described by the gene signature of either grade 1 or grade 3. We assessed the potential of the new approach of integrating mRNA expression profile, copy number alterations, and microRNA expression levels to select a limited number of genomic BC biomarkers. The combination of mRNA profile analysis and copy number data with microRNA expression levels led to the identification of two gene signatures of 42 and 4 altered genes (FOXM1, KPNA4, H2AFV and DDX19A) respectively, the latter obtained through a meta-analytical procedure. The 42-based gene signature identifies 4 classes of up- or down-regulated microRNAs (17 microRNAs) and of their 17 target mRNA, and the 4-based genes signature identified 4 microRNAs (Hsa-miR-320d, Hsa-miR-139-5p, Hsa-miR-567 and Hsa-let-7c). These results are discussed from a biological point of view with respect to pathological features of BC. Our identified mRNAs and microRNAs were validated as prognostic factors of BC disease progression, and could potentially facilitate the implementation of assays for laboratory validation, due to their reduced number.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号