首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Liver ischemia and reperfusion (I/R) injury is characterized by oxidative stress that is accompanied by alterations of the endogenous defensive system. Emerging evidence suggests a protective role for autophagy induced by multiple stressors including reactive oxygen species. Meanwhile, heme oxygenase-1 (HO-1) has long been implicated in cytoprotection against oxidative stress in vitro and in vivo. Therefore, we investigated the impact of autophagy in the pathogenesis of liver I/R and its molecular mechanisms, particularly its linkage to HO-1. By using transmission electron microscopic analysis and biochemical autophagic flux assays with microtubule-associated protein 1 light chain 3-II, and beclin-1, representative autophagy markers, and p62, a selective substrate for autophagy, we found that reperfusion reduced autophagy both in the rat liver and in primary cultured hepatocytes. When autophagy was further inhibited with chloroquine or wortmannin, I/R-induced hepatocellular injury was aggravated. While livers that underwent I/R showed increased levels of mammalian target of rapamaycin and calpain 1 and 2, inhibition of calpain 1 and 2 induced an autophagic response in hepatocytes subjected to hypoxia/reoxygenation. HO-1 increased autophagy, and HO-1 reduced I/R-induced calcium overload in hepatocytes and prevented calpain 2 activation both in vivo and in vitro. Taken together, these findings suggest that the impaired autophagy during liver I/R, which is mediated by calcium overload and calpain activation, contributes to hepatocellular damage and the HO-1 system protects the liver from I/R injury through enhancing autophagy.  相似文献   

2.
Myotonic dystrophy (DM) is a dominant neuromuscular disorder caused by the expansion of trinucleotide CTG repeats in the 3-untranslated region (3'-UTR) of the MtPK gene. Although DM-associated mental retardation suggests that neuronal functions are disturbed by the expansion mutation, the effect of this alteration in neuronal cells has not been approached. In this study we established stable transfectans of PC12 neuronal cell line expressing the reporter gene CAT alone (empty-vector clone) or fused to the MtPK 3'-UTR with 5, 60, or 90 CTG repeats (CTG5, CTG60, and CTG90 clones, respectively). CTG90 cells exhibited a suppression of NGF-induced neuronal differentiation while empty-vector, CTG5 and CTG60 clones differentiated normally. CTG90 cells displayed normal activation of early differentiation markers, ERK1/2, but the up-regulation of the late marker MAP2 was dramatically reduced. Our neuronal cell system provides the first information of how the mutant MtPK 3'-UTR mRNA affects neuronal functions.  相似文献   

3.
Autophagy is a catabolic process that provides the degradation of altered/damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagic flux is fundamental for the homeostasis of skeletal muscles in physiological conditions and in response to stress. Defective as well as excessive autophagy is detrimental for muscle health and has a pathogenic role in several forms of muscle diseases. Recently, we found that defective activation of the autophagic machinery plays a key role in the pathogenesis of muscular dystrophies linked to collagen VI. Impairment of the autophagic flux in collagen VI null (Col6a1–/–) mice causes accumulation of dysfunctional mitochondria and altered sarcoplasmic reticulum, leading to apoptosis and degeneration of muscle fibers. Here we show that physical exercise activates autophagy in skeletal muscles. Notably, physical training exacerbated the dystrophic phenotype of Col6a1–/– mice, where autophagy flux is compromised. Autophagy was not induced in Col6a1–/– muscles after either acute or prolonged exercise, and this led to a marked increase of muscle wasting and apoptosis. These findings indicate that proper activation of autophagy is important for muscle homeostasis during physical activity.  相似文献   

4.
《Autophagy》2013,9(12):1415-1423
Autophagy is a catabolic process that provides the degradation of altered/damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagic flux is fundamental for the homeostasis of skeletal muscles in physiological conditions and in response to stress. Defective as well as excessive autophagy is detrimental for muscle health and has a pathogenic role in several forms of muscle diseases. Recently, we found that defective activation of the autophagic machinery plays a key role in the pathogenesis of muscular dystrophies linked to collagen VI. Impairment of the autophagic flux in collagen VI null (Col6a1–/–) mice causes accumulation of dysfunctional mitochondria and altered sarcoplasmic reticulum, leading to apoptosis and degeneration of muscle fibers. Here we show that physical exercise activates autophagy in skeletal muscles. Notably, physical training exacerbated the dystrophic phenotype of Col6a1–/– mice, where autophagy flux is compromised. Autophagy was not induced in Col6a1–/– muscles after either acute or prolonged exercise, and this led to a marked increase of muscle wasting and apoptosis. These findings indicate that proper activation of autophagy is important for muscle homeostasis during physical activity.  相似文献   

5.
6.
Although the mechanisms controlling skeletal muscle homeostasis have been identified, there is a lack of knowledge of the integrated dynamic processes occurring during myogenesis and their regulation. Here, metabolism, autophagy and differentiation were concomitantly analyzed in mouse muscle satellite cell (MSC)-derived myoblasts and their cross-talk addressed by drug and genetic manipulation. We show that increased mitochondrial biogenesis and activation of mammalian target of rapamycin complex 1 inactivation-independent basal autophagy characterize the conversion of myoblasts into myotubes. Notably, inhibition of autophagic flux halts cell fusion in the latest stages of differentiation and, conversely, when the fusion step of myocytes is impaired the biogenesis of autophagosomes is also impaired. By using myoblasts derived from p53 null mice, we show that in the absence of p53 glycolysis prevails and mitochondrial biogenesis is strongly impaired. P53 null myoblasts show defective terminal differentiation and attenuated basal autophagy when switched into differentiating culture conditions. In conclusion, we demonstrate that basal autophagy contributes to a correct execution of myogenesis and that physiological p53 activity is required for muscle homeostasis by regulating metabolism and by affecting autophagy and differentiation.Muscle satellite cells (MSCs) in adult muscle remain quiescent until external stimuli (such as injury or even exercise) trigger their re-entry into the cell cycle. Their progeny, myoblasts, fuse to form new multinucleated myofibers. In this study, the ability of MSC to give rise to muscle progenitor cells (that is, myoblasts) that could differentiate and fuse in vitro has been exploited to analyze the integrated network of signaling pathways that operate during myogenesis.Autophagy undergoes a fine tuning during cell and tissue differentiation in order to adapt to the dynamic changes occurring in the tissue microenvironment.1 Using the stable C2C12 cell line, it was shown that autophagy is induced during muscle differentiation despite the concomitant activation of mammalian target of rapamycin (mTOR).2 Interestingly, inhibition of autophagy was found to impair the differentiation and fusion of C2C12 myoblasts, while favoring their apoptosis.3 Autophagy is increased in muscle in several physiological and pathological conditions, including fasting, atrophy and exercise.4 Much less is known about the link between cell metabolism and autophagy during muscle differentiation under physiological conditions.p53 has been shown to promote myoblast differentiation by regulating the function of pRb,5, 6 and to have a pleiotropic role in muscle metabolism by promoting exercise-induced mitochondrial biogenesis in skeletal muscle.7, 8 How the physiological level of p53 impacts on these changes during differentiation has not been explored.The role of p53 in the regulation of autophagy is multi-facets.9 Nuclear p53 positively regulates autophagy following exogenous stress, resulting in a pro-death or pro-survival outcomes.10 Conversely, cytoplasmic p53 inhibits autophagy under starvation or endoplasmic reticulum (ER) stress.11 What is the role of p53 in the regulation of basal autophagy during myogenesis and its physiological implications are still unknown.We address these issues using mouse skeletal MSC-derived myoblasts that when differentiate in vitro well mimic the dynamic processes occurring in vivo when a myoblast is asked to differentiate and fuse into a fully differentiated myotube. The findings here reported unravel a clear role for basal autophagy in muscle differentiation and identify a role for p53 in muscle metabolism and basal autophagy.  相似文献   

7.
We report clinical, genetical and genealogical findings in 149 French families from the Rh?ne-Alpes area studied over a 5-year period. There was a significant excess of DM females compared to DM males with (CTG) repeat sizes between 1-2 kb. The mean maternal (CTG) repeat size was higher than paternal repeat size. Anticipation phenomenom was significantly higher after maternal than after paternal transmission. A significant correlation between parental (CTG) repeat size and intergenerational variation both in paternal and maternal transmissions was observed. The anticipation phenomenom was more important for sons than daughters particularly after maternal transmission. The mean (CTG) repeat size in mothers of CDM cases was about twice that of mothers of NCDM children. The risk of giving birth to a CDM child increased considerably when the number of maternal (CTG) repeats was over 300 (CTG). A significant excess of DM females was observed. They had on average 24% fewer children than male patients. Paternal transmission (63.6%) of DM occurred more frequently than maternal transmission (52.7%).  相似文献   

8.
The whole-cell patch clamp technique was used to record potassium currents in in vitro differentiating myoblasts isolated from healthy and myotonic dystrophy type 1 (DM1) foetuses carrying 2000 CTG repeats. The fusion of the DM1 myoblasts was reduced in comparison to that of the control cells. The dystrophic muscle cells expressed less voltage-activated K+ (delayed rectifier and non-inactivating delayed rectifier) and inward rectifier channels than the age-matched control cells. However, the resting membrane potential was not significantly different between the control and the DM1 cells. After four days in a differentiation medium, the dystrophic cells expressed the fast-inactivating transient outward K+ channels, which were not observed in healthy cells. We suggest that the low level of potassium currents measured in differentiated DM1 cells could be related to their impaired fusion.  相似文献   

9.
10.
The autophagy–lysosome system is essential for muscle protein synthesis and degradation equilibrium, and its dysfunction has been linked to various muscle disorders. It has been reported that a diverse collection of extracellular matrix constituents, including decorin, collagen VI, laminin α2, endorepellin, and endostatin, can modulate autophagic signaling pathways. However, the association between autophagy and perlecan in muscle homeostasis remains unclear. The mechanical unloading of perlecan-deficient soleus muscles resulted in significantly decreased wet weights and cross-section fiber area compared with those of control mice. We found that perlecan deficiency in slow-twitch soleus muscles enhanced autophagic activity. This was accompanied by a decrease in autophagic substrates, such as p62, and an increase in LC3II levels. Furthermore, perlecan deficiency caused a reduction in the phosphorylation levels of p70S6k and Akt and increased the phosphorylation of AMPKα. Our findings suggested that perlecan inhibits the autophagic process through the activation of the mTORC1 pathway. This autophagic response may be a novel target for enhancing the efficacy of skeletal muscle atrophy treatment.  相似文献   

11.
Differentiation of skeletal muscle is affected in myotonic dystrophy (DM) patients. Analysis of cultured myoblasts from DM patients shows that DM myoblasts lose the capability to withdraw from the cell cycle during differentiation. Our data demonstrate that the expression and activity of the proteins responsible for cell cycle withdrawal are altered in DM muscle cells. Skeletal muscle cells from DM patients fail to induce cytoplasmic levels of a CUG RNA binding protein, CUGBP1, while normal differentiated cells accumulate CUGBP1 in the cytoplasm. In cells from normal patients, CUGBP1 up-regulates p21 protein during differentiation. Several lines of evidence show that CUGBP1 induces the translation of p21 via binding to a GC-rich sequence located within the 5' region of p21 mRNA. Failure of DM cells to accumulate CUGBP1 in the cytoplasm leads to a significant reduction of p21 and to alterations of other proteins responsible for the cell cycle withdrawal. The activity of cdk4 declines during differentiation of cells from control patients, while in DM cells cdk4 is highly active during all stages of differentiation. In addition, DM cells do not form Rb/E2F repressor complexes that are abundant in differentiated cells from normal patients. Our data provide evidence for an impaired cell cycle withdrawal in DM muscle cells and suggest that alterations in the activity of CUGBP1 causes disruption of p21-dependent control of cell cycle arrest.  相似文献   

12.
《Autophagy》2013,9(3):339-350
In vivo administration of the mitochondrial inhibitor 3-nitropropionic acid (3-NP) produces striatal pathology mimicking Huntington disease (HD). However, the mechanisms of cell death induced by metabolic impairment are not fully understood. The present study investigated contributions of p53 signaling pathway to autophagy activation and cell death induced by 3-NP. Rat striatum was intoxicated with 3-NP by stereotaxic injection. Morphological and biochemical analyses demonstrated activation of autophagy in striatal cells as evidenced by increased the formation of autophagosomes, the expression of active lysosomal cathepsin B and D, microtubule associate protein light chain 3 (LC3) and conversion of LC3-I to LC3-II. 3-NP upregulated the expression of tumor suppressor protein 53 (p53) and its target genes including Bax, p53-upregulated modulator of apoptosis (PUMA) and damage-regulated autophagy modulator (DRAM). 3-NP-induced elevations in pro-apoptotic proteins Bax and PUMA, autophagic proteins LC3-II and DRAM were significantly reduced by the p53 specific inhibitor pifithrin-α (PFT). PFT also significantly inhibited 3-NP-induced striatal damage. Similarly, 3-NP-induced DNA fragmentation and striatal cell death were robustly attenuated by the autophagy inhibitor 3-methyladenine (3-MA) and bafilomycin A1 (BFA). These results suggest that p53 plays roles in signaling both autophagy and apoptosis. Autophagy, at least partially, contributes to neurodegeneration induced by mitochondria dysfunction.  相似文献   

13.
We have investigated the in vitro effects of increased levels of glucose and free fatty acids on autophagy activation in pancreatic beta cells. INS-1E cells and isolated rat and human pancreatic islets were incubated for various times (from 2 to 24 h) at different concentrations of glucose and/or palmitic acid. Then, cell survival was evaluated and autophagy activation was explored by using various biochemical and morphological techniques. In INS-1E cells as well as in rat and human islets, 0.5 and 1.0 mM palmitate markedly increased autophagic vacuole formation, whereas high glucose was ineffective alone and caused little additional change when combined with palmitate. Furthermore, LC3-II immunofluorescence co-localized with that of cathepsin D, a lysosomal marker, showing that the autophagic flux was not hampered in PA-treated cells. These effects were maintained up to 18-24 h incubation and were associated with a significant decline of cell survival correlated with both palmitate concentration and incubation time. Ultrastructural analysis showed that autophagy activation, as evidenced by the occurrence of many autophagic vacuoles in the cytoplasm of beta cells, was associated with a diffuse and remarkable swelling of the endoplasmic reticulum. Our results indicate that among the metabolic alterations typically associated with type 2 diabetes, high free fatty acids levels could play a role in the activation of autophagy in beta cells, through a mechanism that might involve the induction of endoplasmic reticulum stress.  相似文献   

14.
《Autophagy》2013,9(7):887-895
Cigarette smoke-induced cell death contributes to the pathogenesis of chronic obstructive pulmonary disease, though the relative roles of apoptosis and autophagy remain unclear. The inducible stress protein heme oxygenase-1 (HO-1) confers cytoprotection against oxidative stress. We examined the relationships between these processes in human bronchial epithelial cells (Beas-2b) exposed to cigarette smoke extract (CSE). CSE induced morphological and biochemical markers of autophagy in Beas-2b cells. CSE induced autophagosome formation as evidenced by formation of GFP-LC3 puncta and electron microscopic analysis. Furthermore, CSE increased the processing of microtubule-associated protein-1 light chain-3 (LC3B-I) to LC3B-II, within 1 hr of exposure. Increased LC3B-II was associated with increased autophagy, since inhibitors of lysosomal proteases and of autophagosome-lysosome fusion further increased LC3B-II levels during CSE exposure. CSE concurrently induced extrinsic apoptosis in Beas-2b cells involving early activation of death-inducing-signaling-complex (DISC) formation and downstream activation of caspases (-8,-9,-3). The induction of extrinsic apoptosis by CSE was dependent in part on autophagic proteins. Reduction of beclin-1 levels with beclin 1 siRNA inhibited DISC formation and caspase-3/8 activation in response to CSE. LC3B siRNA also inhibited caspase-3/8 activation.  相似文献   

15.
Zeng X  Kinsella TJ 《Autophagy》2007,3(4):368-370
DNA Mismatch repair (MMR) maintains genome integrity by correcting DNA replication errors and blocking homologous recombination between divergent DNA sequences. The MMR system also activates both checkpoint and apoptotic responses following certain types of DNA damage. In a recent study, we describe a novel role for MMR in mediating an autophagic response to 6?thioguanine (6-TG), a DNA modifying chemical. Our results show that MMR proteins (MLH1 or MSH2) are required for signaling to the autophagic pathway after exposure to 6-TG. Using PFT-alpha, a p53 inhibitor, and shRNA-mediated silencing of p53 expression, we also show that p53 plays an essential role in the autophagic pathway downstream of the MMR system. This study suggests a novel function of MMR in mediating autophagy following chemical (6-TG) DNA mismatch damage through p53 activation. Here, we present the model and the clinical implications of the role of MMR in autophagy.  相似文献   

16.
Emerging interest on the interrelationship between the apoptotic and autophagy pathways in the context of cancer chemotherapy is providing exciting discoveries. Complexes formed between molecules from both pathways present potential targets for chemotherapeutics design as disruption of such complexes could alter cell survival. This study demonstrates an important role of Beclin‐1 and p53 interaction in cell fate decision of human embryonal carcinoma cells. The findings provide evidence for p53 interaction with Beclin‐1 through the BH3 domain of the latter. This interaction facilitated Beclin‐1 ubiquitination through lysine 48 linkage, resulting in proteasome‐mediated degradation, consequently maintaining a certain constitutive level of Beclin‐1. Disruption of Beclin‐1–p53 interaction through shRNA‐mediated down‐regulation of p53 reduced Beclin‐1 ubiquitination suggesting requirement of p53 for the process. Reduction of ubiquitination consequently resulted in an increase in Beclin‐1 levels with cells showing high autophagic activity. Enforced overexpression of p53 in the p53 down‐regulated cells restored ubiquitination of Beclin‐1 reducing its level and lowering autophagic activity. The Beclin‐1–p53 interaction was also disrupted by exposure to cisplatin‐induced stress resulting in higher level of Beclin‐1 because of lesser ubiquitination. This higher concentration of Beclin‐1 increased autophagy and offered protection to the cells from cisplatin‐induced death. Inhibition of autophagy by either pharmacological or genetic means during cisplatin exposure increased apoptotic death in vitro as well as in xenograft tumours grown in vivo confirming the protective nature of autophagy. Therefore, Beclin‐1–p53 interaction defines one additional molecular subroutine crucial for cell fate decisions in embryonal carcinoma cells.  相似文献   

17.
《Autophagy》2013,9(1):113-130
P2RX7 is an ATP-gated ion channel, which can also exhibit an open state with a considerably wider permeation. However, the functional significance of the movement of molecules through the large pore (LP) and the intracellular signaling events involved are not known. Here, analyzing the consequences of P2RX7 activation in primary myoblasts and myotubes from the Dmdmdx mouse model of Duchenne muscular dystrophy, we found ATP-induced P2RX7-dependent autophagic flux, leading to CASP3-CASP7-independent cell death. P2RX7-evoked autophagy was triggered by LP formation but not Ca2+ influx or MAPK1-MAPK3 phosphorylation, 2 canonical P2RX7-evoked signals. Phosphoproteomics, protein expression inference and signaling pathway prediction analysis of P2RX7 signaling mediators pointed to HSPA2 and HSP90 proteins. Indeed, specific HSP90 inhibitors prevented LP formation, LC3-II accumulation, and cell death in myoblasts and myotubes but not in macrophages. Pharmacological blockade or genetic ablation of p2rx7 also proved protective against ATP-induced death of muscle cells, as did inhibition of autophagy with 3-MA. The functional significance of the P2RX7 LP is one of the great unknowns of purinergic signaling. Our data demonstrate a novel outcome—autophagy—and show that molecules entering through the LP can be targeted to phagophores. Moreover, we show that in muscles but not in macrophages, autophagy is needed for the formation of this LP. Given that P2RX7-dependent LP and HSP90 are critically interacting in the ATP-evoked autophagic death of dystrophic muscles, treatments targeting this axis could be of therapeutic benefit in this debilitating and incurable form of muscular dystrophy.  相似文献   

18.
Myotonic dystrophy type 1 (DM1) is an autosomal dominant disorder of muscular dystrophy characterized by muscle weakness and wasting. DM1 is caused by expansion of CTG repeats in the 3′-untranslated region (3′-UTR) of DM protein kinase (DMPK) gene. Since CUG-repeat RNA transcribed from the expansion of CTG repeats traps RNA-binding proteins that regulate alternative splicing, several abnormalities of alternative splicing are detected in DM1, and the abnormal splicing of important genes results in the appearance of symptoms. In this study, we identify two abnormal splicing events for actinin-associated LIM protein 3 (PDLIM3/ALP) and fibronectin 1 (FN1) in the skeletal muscles of DM1 patients. From the analysis of the abnormal PDLIM3 splicing, we propose that ZASP-like motif-deficient PDLIM3 causes the muscular symptoms in DM. PDLIM3 binds α-actinin 2 in the Z-discs of muscle, and the ZASP-like motif is needed for this interaction. Moreover, in adult humans, PDLIM3 expression is highest in skeletal muscles, and PDLIM3 splicing in skeletal muscles is regulated during human development.  相似文献   

19.
The frequencies of haplotypes based upon the (CTG)n repeat and three other biallelic markers in and around the myotonic dystrophy (DM) locus were estimated in 13 ethnically, linguistically and geographically diverse sub-populations of India. The range of CTG repeats in caste populations was 5-31, while in tribal populations the range was shorter (5-23). Extensive variation in frequencies of large (CTG)n alleles (> or =18 repeats) was found in Indian populations. The implications of this finding on DM epidemiology are discussed. Haplotype diversity was found to be very high in most populations. The majority of the Indian DM patients carried a haplotype that is commonly found among DM patients globally; this is the most common haplotype in the class of large (> or =18 repeats) CTG alleles. However, one haplotype was found to be present in particularly high frequency in Indian populations; this haplotype was also found among Indian DM patients. This haplotype may be a characteristic of Indian and possibly of other East Asian populations.  相似文献   

20.
Wang Y  Han R  Liang ZQ  Wu JC  Zhang XD  Gu ZL  Qin ZH 《Autophagy》2008,4(2):214-226
Previous studies found that kainic acid (KA)-induced apoptosis involved the lysosomal enzyme cathepsin B, suggesting a possible mechanism of autophagy in excitotoxicity. The present study was sought to investigate activation and contribution of autophagy to excitotoxic neuronal injury mediated by KA receptors. The formation of autophagosomes was observed with transmission electron microscope after excitotoxin exposure. The contribution of autophagic mechanisms to KA-induced upregulation of microtubule-associated protein 1A/1B light chain 3 (LC3), lysosome- associated membrane protein 2 (LAMP2) and cathepsin B, release of cytochrome c, activation of caspase-3, down-regulation of Bcl-2, upregulation of Bax, p53, puma and apoptotic death of striatal neurons were assessed with co-administration of the autophagy inhibitor 3-methyladenine (3-MA). These studies showed that KA brought about an increase in the formation of autophagosomes and autolysosomes in the cytoplasm of striatal cells. KA-induced increases in the ratio of LC3-II/LC3-I, LAMP2, cathepsin B, release of cytochrome c and activation of caspase-3 were blocked by pre-treatment with 3-MA. 3-MA also reversed KA-induced down-regulation of Bcl-2 and upregulation of Bax protein levels, LC3, p53 and puma mRNA levels in the striatum. KA-induced internucleosomal DNA fragmentation and loss of striatal neurons were robustly inhibited by 3-MA. These results suggest that over-stimulation of KA receptors can activate autophagy. The autophagic mechanism participates in programmed cell death through regulating the mitochondria-mediated apoptotic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号