首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
APN inhibitors have been considered as potential anticancer agents for years. LB-4b is the first synthetic APN inhibitor to be evaluated for both of its anti-invasion and anti-angiogenesis effects. As a potent synthetic APN inhibitor (IC50 = 850 nM, versus bestatin of 8.1 μM), LB-4b was determined to have more significant block effects to cancer cell invasion and angiogenesis than bestatin. Besides, it is able to be easily synthesized with a high total yield, while the reported synthetic methods of bestatin are much more complex.  相似文献   

2.
We previously reported the phenylchloronitrobenzamides (PCNBs), a novel class of compounds active against the species of trypanosomes that cause Human African Trypanosomiasis (HAT). Herein, we explored the potential to adjust the reactivity of the electrophilic chloronitrobenzamide core. These studies identified compound 7d that potently inhibited the growth of trypanosomes (EC50 = 120 nM for Trypanosoma b. brucei, 18 nM for Trypanosoma b. rhodesiense, and 38 nM for Trypanosoma b. gambiense) without significant cytotoxicity against mammalian cell lines (EC50 > 25 μM for HepG2, HEK293, Raji, and BJ cell lines) and also had good stability in microsomal models (t1/2 > 4 h in both human and mouse). Overall these properties indicate the compound 7d and its analogs are worth further exploration as potential leads for HAT.  相似文献   

3.
A series of novel non-covalent piperidine-containing dipeptidyl derivatives were designed, synthesized and evaluated as proteasome inhibitors. All target compounds were tested for their proteasome chymotrypsin-like inhibitory activities, and selected derivatives were evaluated for the anti-proliferation activities against two multiple myeloma (MM) cell lines RPMI 8226 and MM-1S. Among all of these compounds, eight exhibited significant proteasome inhibitory activities with IC50 less than 20 nM, and four are more potent than the positive control Carfilzomib. Compound 28 displayed the most potent proteasome inhibitory activity (IC50: 1.4 ± 0.1 nM) and cytotoxicities with IC50 values at 13.9 ± 1.8 nM and 9.5 ± 0.5 nM against RPMI 8226 and MM-1S, respectively. Additionally, the ex vivo blood cell proteasome inhibitory activities of compounds 24 and 2729 demonstrated that the enzymatic metabolism in the whole blood could be well tolerated. All these experiments confirmed that the piperidine-containing non-covalent proteasome inhibitors are potential leads for exploring new anti-cancer drugs.  相似文献   

4.
PDE4 inhibitors are a validated approach as anti-inflammatory agents but are limited by systemic side effects including emesis. We report a soft-drug strategy incorporating a carboxylic ester group into boron-containing PDE4 inhibitors leading to the discovery of a series of benzoxaborole compounds with good potency (for example IC50 = 47 nM of compound 2) and low emetic activity. These compounds are intended for dermatological use further limiting possible systemic side effects.  相似文献   

5.
The high potential of quinoline containing natural products and their derivatives in medicinal chemistry led us to discover a novel series of compounds 623 based on the concept of molecular hybridization. Most of the synthesized analogues exhibited potent leishmanicidal potential. The most potent compound (23, IC50 = 0.10 ± 0.001 μM) among the series was found ∼70 times more lethal than the standard drug. The current series 623 conceded in the development of fourteen (14) extraordinarily active compounds against leishmaniasis. In silico analysis were also performed to probe the mode of action while all the compounds structure were established by NMR and Mass spectral analysis.  相似文献   

6.
Organophosphorus compounds (OPs) are widely used as pesticides because of their ability to inhibit the activity of acetylcholinesterase (AChE) in the nervous system. Thus, AChE is generally used as a biosensor for pesticide detection. Due to the instability of AChE a more stable enzyme would be desirable for robust applications. We investigated the sensitivity of a thermostable carboxylesterase from the archaeon Archaeoglobus fulgidus (AFEST) to seven selected OPs. The IC50 of dichlorvos against AFEST (50.8 ± 2.6 nM) was 10-fold lower than that of the commercially obtained AChE, indicating that AFEST had higher sensitivity. Its sensitivity for the other OPs was lower than AChE. To enhance the sensitivity of AFEST to OPs, site-directed mutations were introduced in the cap domain of AFEST. The sensitivity of mutant N44S/S48V was enhanced toward all seven OPs compared to the wild-type and was higher than AChE for four OPs, including paraoxon (3.3 ± 0.01 nM), dichlorvos (28.0 ± 0.6 nM), profenofos (43.0 ± 1.0 nM), and diazinon (3.0 ± 0.2 nM). The half-lives of AFEST and the mutant N44S/S48V at 37 °C were over 15 d. The interactions between the enzymes and select OPs were investigated by molecular docking. The results demonstrated that AFEST and the mutant N44S/S48V have the potential to be biosensor for OP detection.  相似文献   

7.
Exploring small-molecule acetylcholinesterase (AChE) inhibitors to slow the breakdown of acetylcholine (Ach) represents the mainstream direction for Alzheimer’s disease (AD) therapy. As the first acetylcholinesterase inhibitor approved for the clinical treatment of AD, tacrine has been widely used as a pharmacophore to design hybrid compounds in order to combine its potent AChE inhibition with other multi-target profiles. In present study, a series of novel tacrine–coumarin hybrids were designed, synthesized and evaluated as potent dual-site AChE inhibitors. Moreover, compound 1g was identified as the most potent candidate with about 2-fold higher potency (Ki = 16.7 nM) against human AChE and about 2-fold lower potency (Ki = 16.1 nM) against BChE than tacrine (Ki = 35.7 nM for AChE, Ki = 8.7 nM for BChE), respectively. In addition, some of the tacrine–coumarin hybrids showed simultaneous inhibitory effects against both Aβ aggregation and β-secretase. We therefore conclude that tacrine–coumarin hybrid is an interesting multifunctional lead for the AD drug discovery.  相似文献   

8.
A novel series of substituted benzoylguanidine derivatives were designed and synthesized as potent NHE1 inhibitors. Most compounds can significantly inhibit NHE1-mediated platelet swelling in a concentration-dependent manner, among which compound 5f (IC50 = 3.60 nM) and 5l (IC50 = 4.48 nM) are 18 and 14 times respectively more potent than cariporide (IC50 = 65.0 nM). Furthermore, when tested in vivo and in vitro, compound 5f showed superior cardioprotective effects against SD rat myocardial ischemic-reperfusion injury over cariporide, representing a promising lead compound for further exploration.  相似文献   

9.
The molecular mechanisms and interactions underlying bile acid cytotoxicity are important to understand for intestinal and hepatic disease treatment and prevention and the design of bile acid-based therapeutics.Bile acid lipophilicity is believed to be an important cytotoxicity determinant but the relationship is not well characterized. In this study we prepared new azido and other lipophilic BAs and altogether assembled a panel of 37 BAs with good dispersion in lipophilicity as reflected in RPTLC RMw. The MTT cell viability assay was used to assess cytotoxicity over 24 h in the HET-1A cell line (oesophageal). RMw values inversely correlated with cell viability for the whole set (r2 = 0.6) but this became more significant when non-acid compounds were excluded (r2 = 0.82, n = 29). The association in more homologous subgroups was stronger still (r2 >0.96). None of the polar compounds were cytotoxic at 500 μM, however, not all lipophilic BAs were cytotoxic. Notably, apart from the UDCA primary amide, lipophilic neutral derivatives of UDCA were not cytotoxic. Finally, CDCA, DCA and LagoDCA were prominent outliers being more toxic than predicted by RMw. In a hepatic carcinoma line, lipophilicity did not correlate with toxicity except for the common naturally occurring bile acids and their conjugates. There were other significant differences in toxicity between the two cell lines that suggest a possible basis for selective cytotoxicity. The study shows: (i) azido substitution in BAs imparts lipophilicity and toxicity depending on orientation and ionizability; (ii) there is an inverse correlation between RMw and toxicity that has good predictive value in homologous sets; (iii) lipophilicity is a necessary but apparently not sufficient characteristic for BA cytocidal activity to which it appears to be indirectly related.  相似文献   

10.
Several tetrahydroimidazopyrimidines were prepared using silver assisted cyclization as the key step. The binding affinities of compounds thus prepared were evaluated in vitro toward hCRF1R. Initial lead compound 16 (Ki = 32 nM) demonstrated modest putative anxiolytic effects in the mouse canopy test. Further optimization using parallel synthesis provided compounds with Ki’s <50 nM.  相似文献   

11.
Selective PDE3 (phosphodiesterase 3) inhibitors improve cardiac contractility and may be used in congestive heart failure. However, their proarrhythmic potential is the most important side effect. In this work ten new synthetic compounds (3-[(4-methyl-2-oxo-1,2-dihydro-6-quinolinyl)oxy]methylbenzamide analogs: 4aj) were designed, synthesized and tested for the inhibitory activity against human PDE3A and PDE3B. The strategy of the design was based on the structure of vesnarinone (a selective PDE3 inhibitor) and its docking analysis results. The synthetic compounds showed better PDE3 inhibitory activity in comparison with vesnarinone. Using docking analysis, a common binding model of each compound toward PDE3 was suggested. In the next step the potential cardiotonic activity of the best PDE3A inhibitors (4b, IC50 = 0.43 ± 0.04 μM) was evaluated by using the spontaneously beating atria model. In the experiment, atrium of reserpine-treated rat was isolated and the contractile and chronotropic effects of the synthetic compound were assessed. That was carried out in comparison with vesnarinone. The best pharmacological profile was obtained for the compound 4b, which displayed selectivity for increasing the force of contraction (46 ± 3% change over the control) rather than the frequency rate (16 ± 4% change over the control) at 100 μM.  相似文献   

12.
Detecting harmful bioactive compounds produced by bloom-forming pelagic algae is important to assess potential risks to public health. We investigated the application of a cell-based bioassay: the rainbow trout gill-w1 cytotoxicity assay (RCA) that detects changes in cell metabolism. The RCA was used to evaluate the cytotoxic effects of (1) six natural freshwater lake samples from cyanobacteria-rich lakes in central Ontario, Canada; (2) analytical standards of toxins and noxious compounds likely to be produced by the algal communities in these lakes; and (3) complex mixtures of compounds produced by cyanobacterial and chrysophyte cultures. RCA provided a measure of lake water toxicity that could not be reproduced using toxin or noxious compound standards. RCA was not sensitive to toxins and only sensitive to noxious compounds at concentrations higher than reported environmental averages (EC50  103 nM). Cultured algae produced bioactive compounds that had recognizable dose dependent and toxic effects as indicated by RCA. Toxicity of these bioactive compounds depended on taxa (cyanobacteria, not chrysophytes), growth stage (stationary phase more toxic than exponential phase), location (intracellular more toxic than extracellular) and iron status (cells in high-iron treatment more toxic than cells in low-iron treatment). The RCA provides a new avenue of exploration and potential for the detection of natural lake algal toxic and noxious compounds.  相似文献   

13.
The role of all-trans-retinoic acid (ATRA) in the development and maintenance of many epithelial and neural tissues has raised great interest in the potential of ATRA and related compounds (retinoids) as pharmacological agents, particularly for the treatment of cancer, skin, neurodegenerative and autoimmune diseases. The use of ATRA or prodrugs as pharmacological agents is limited by a short half-life in vivo resulting from the activity of specific ATRA hydroxylases, CYP26 enzymes, induced by ATRA in liver and target tissues. For this reason retinoic acid metabolism blocking agents (RAMBAs) have been developed for treating cancer and a wide range of other diseases.The synthesis, CYP26A1 inhibitory activity and molecular modeling studies of novel methyl 3-[4-(arylamino)phenyl]-3-(azole)-2,2-dimethylpropanoates are presented. From this series of compounds clear SAR can be derived for 4-substitution of the phenyl ring with electron-donating groups more favourable for inhibitory activity. Both the methylenedioxyphenyl imidazole (17, IC50 = 8 nM) and triazole (18, IC50 = 6.7 nM) derivatives were potent inhibitors with additional binding interactions between the methylenedioxy moiety and the CYP26 active site likely to be the main factor. The 6-bromo-3-pyridine imidazole 15 (IC50 = 5.7 nM) was the most active from this series compared with the standards liarozole (IC50 = 540 nM) and R116010 (IC50 = 10 nM).  相似文献   

14.
In this study, a series of sulfamoyl carbamates and sulfamide derivatives were synthesized. Six commercially available benzyl amines and BnOH were reacted with chlorosulfonyl isocyanate (CSI) to give sulfamoyl carbamates. Pd–C catalyzed hydrogenolysis reactions of carbamates afforded sulfamides. The inhibition effects of novel benzylsulfamides on the carbonic anhydrase I, and II isoenzymes (CA I, and CA II) purified from fresh human blood red cells were determined by Sepharose-4B-L-Tyrosine-sulfanilamide affinity chromatography. In vitro studies were shown that all of novel synthesized benzylsulfamide analogs inhibited, concentration dependently, both hCA isoenzyme activities. The novel benzylsulfamide compounds investigated here exhibited nanomolar inhibition constants against the two isoenzymes. Ki values were in the range of 28.48 ± 0.01–837.09 ± 0.19 nM and 112.01 ± 0.01–268.01 ± 0.22 nM for hCAI and hCA II isoenzymes, respectively. Molecular modeling approaches were also applied for studied compounds.  相似文献   

15.
A series of fused bicyclic and urea derivatives of spirocyclic compounds were designed, synthesised and evaluated in vitro as potent CCR1 antagonists. In particular, 4 (7 nM), 44 (1.3 nM), 48 (0.89 nM) and 50 (0.63 nM) were the most potent hCCR1 antagonists in this series of compounds. Moreover, some of these substances demonstrated good rodent cross-over, especially 46 which exhibited very high rat CCR1 binding affinity with an IC50 value of 16 nM.  相似文献   

16.
A novel series of compounds obtained by fusing the acetylcholinesterase (AChE) inhibitor donepezil and the antioxidant melatonin were designed as multi-target-directed ligands for the treatment of Alzheimer’s disease (AD). In vitro assay indicated that most of the target compounds exhibited a significant ability to inhibit acetylcholinesterase (eeAChE and hAChE), butyrylcholinesterase (eqBuChE and hBuChE), and β-amyloid (Aβ) aggregation, and to act as potential antioxidants and biometal chelators. Especially, 4u displayed a good inhibition of AChE (IC50 value of 193 nM for eeAChE and 273 nM for hAChE), strong inhibition of BuChE (IC50 value of 73 nM for eqBuChE and 56 nM for hBuChE), moderate inhibition of Aβ aggregation (56.3% at 20 μM) and good antioxidant activity (3.28 trolox equivalent by ORAC assay). Molecular modeling studies in combination with kinetic analysis revealed that 4u was a mixed-type inhibitor, binding simultaneously to catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 4u could chelate metal ions, reduce PC12 cells death induced by oxidative stress and penetrate the blood–brain barrier (BBB). Taken together, these results strongly indicated the hybridization approach is an efficient strategy to identify novel scaffolds with desired bioactivities, and further optimization of 4u may be helpful to develop more potent lead compound for AD treatment.  相似文献   

17.
18.
A series of new strobilurin–pyrimidine analogs were designed and synthesized based on the structures of our previously discovered antiproliferative compounds I and II. Biological evaluation with two human cancer cell lines (A549 and HL60) showed that most of these compounds possessed moderate to potent antiproliferative activity. Two potent candidates (8f, IC50 = 2.2 nM and 11d, IC50 = 3.4 nM) were identified with nanomolar activity against leukemia cancer cell line HL60 for further development. This activity represents a 1000- to 2500-fold improvement compared to the parent compounds I and II and is 20- to 30-fold better than the chemotherapy drug, doxorubicin. The present work provides strong incentive for further development of these strobilurin–pyrimidine analogs as potential antitumor agents for the treatment of leukemia.  相似文献   

19.
Neurostatin, a natural glycosphingolipid, and NF115, a synthetic glycolipid, are inhibitors of glioma growth. While neurostatin shows high inhibitory activity on gliomas its abundance is low in mammalian brain. On the contrary NF115 exhibits less inhibitory activity on gliomas, but could be prepared by chemical synthesis. In this study we describe synthetic compounds, structurally related to NF115, capable of inhibiting glioma growth at low micromolar range. We used DNA microarray technology to compare the genes inhibited in U373-MG human glioma cells after treatment with the natural or synthetic inhibitor. New synthetic compounds were developed to interact with the product of Rho GDP dissociation inhibitor alpha gene, which was repressed in both treatments. Compounds that were inhibitors of glioma cell growth in assays for [3H]-thymidine incorporation were then injected in C6 tumor bearing rats and the tumor size in each animal group were measured. The GC-17, GC-4 and IG-5 are new compounds derived from NF115 and showed high antiproliferative activity on tumor cell lines. The GC-17 compound inhibited U373-MG glioblastoma cells (3.2 μM), the effects was fifty times more potent than NF115, and caused a significant reduction of tumor volume (P < 0.05) when tested in Wistar rats allotransplanted with C6 glioma cells.  相似文献   

20.
There is challenge and urgency to synthesize cost-effective chemotherapeutic agents for treatment of malaria after the widespread development of resistance to CQ. In the present study, we synthesized a new series of hybrid 9-anilinoacridine triazines using the cheap chemicals 6,9-dichloro-2-methoxy acridine and cyanuric chloride. The series of new hybrid 9-anilinoacridine triazines were evaluated in vitro for their antimalarial activity against CQ-sensitive 3D7 strain of Plasmodium falciparum and their cytotoxicity were determined on VERO cell line. Of the evaluated compounds, two compounds 17 (IC50 = 4.21 nM) and 22 (IC50 = 4.27 nM) displayed two times higher potency than CQ (IC50 = 8.15 nM). Most of the compounds showed fairly high selectivity index. The compounds 13 and 29 displayed >96.59% and 98.73% suppression, respectively, orally against N-67 strain of Plasmodium yoelii in swiss mice at dose 100 mg/kg for four days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号