首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
NF-κB in inflammation and renal diseases   总被引:1,自引:0,他引:1  
  相似文献   

5.
The IκB kinase/NF-κB signaling pathway has been implicated in the pathogenesis of several inflammatory diseases. Increased activation of NF-κB is often detected in both immune and non-immune cells in tissues affected by chronic inflammation, where it is believed to exert detrimental functions by inducing the expression of proinflammatory mediators that orchestrate and sustain the inflammatory response and cause tissue damage. Thus, increased NF-κB activation is considered an important pathogenic factor in many acute and chronic inflammatory disorders, raising hopes that NF-κB inhibitors could be effective for the treatment of inflammatory diseases. However, ample evidence has accumulated that NF-κB inhibition can also be harmful for the organism, and in some cases trigger the development of inflammation and disease. These findings suggested that NF-κB signaling has important functions for the maintenance of physiological immune homeostasis and for the prevention of inflammatory diseases in many tissues. This beneficial function of NF-κB has been predominantly observed in epithelial cells, indicating that NF-κB signaling has a particularly important role for the maintenance of immune homeostasis in epithelial tissues. It seems therefore that NF-κB displays two faces in chronic inflammation: on the one hand increased and sustained NF-κB activation induces inflammation and tissue damage, but on the other hand inhibition of NF-κB signaling can also disturb immune homeostasis, triggering inflammation and disease. Here, we discuss the mechanisms that control these apparently opposing functions of NF-κB signaling, focusing particularly on the role of NF-κB in the regulation of immune homeostasis and inflammation in the intestine and the skin.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Sun M  Zhao Y  Gu Y  Xu C 《Amino acids》2012,42(5):1735-1747
Taurine is reported to reduce tissue damage induced by inflammation and to protect the brain against experimental stroke. The objective of this study was to investigate whether taurine reduced ischemic brain damage through suppressing inflammation related to poly (ADP-ribose) polymerase (PARP) and nuclear factor-kappaB (NF-κB) in a rat model of stroke. Rats received 2 h ischemia by intraluminal filament and were then reperfused. Taurine (50 mg/kg) was administered intravenously 1 h after ischemia. Treatment with taurine markedly reduced neurological deficits, lessened brain swelling, attenuated cell death, and decreased the infarct volume 72 h after ischemia. Our data showed the up-regulation of PARP and NF-κB p65 in cytosolic fractions in the core and nuclear fractions in the penumbra and core, and the increases in the nuclear poly (ADP-ribose) levels and the decreases in the intracellular NAD+ levels in the penumbra and core at 22 h of reperfusion; these changes were reversed by taurine. Moreover, taurine significantly reduced the levels of tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and intracellular adhesion molecule-1, lessened the activities of myeloperoxidase and attenuated the infiltration of neutrophils in the penumbra and core at 22 h of reperfusion. These data demonstrate that suppressing the inflammatory reaction related to PARP and NF-κB-driven expression of inflammatory mediators may be one mechanism of taurine against ischemic stroke.  相似文献   

17.
18.
Phosphatidylcholine (PC) has been demonstrated as anti-inflammatory and antioxidant/pro-oxidant molecules. In this study, we investigated the protective effects of PC on inflammatory bowel disease (IBD) caused by lipopolysaccharide (LPS)-induced injury in intestinal epithelia cells. The IEC-6 cells (intestinal epithelia cells) were stimulated with LPS (1 μg/mL) for 24 h with or without PC pretreatment, in the next steps: (1) the level of the inflammatory cytokine tumor necrosis factor (TNF)-α was measured with ELISA; (2) the nuclear translocation and phosphorylation of NF-κB was investigated with Western blot, EMSA, immunofluorence assay; (3) the protein phosporylation levels in MAPK signaling pathway were detected with Western blot method. The results showed: (1) compared with the normal group, 10 and 20?μg/mL of PC significantly inhibited the production and activation of TNF-α, (P < 0.01); (2) pretreatment with PC inhibited LPS-induced nuclear translocation and phosphorylation of p65 in IEC-6 cells; (3) pretreatment with PC inhibited the protein phosphorylation levels in MAPK signaling pathway. Our findings indicated that PC had the effect to protect IEC-6 cells from LPS-induced injury and this effect was exerted possibly through inhibiting the TNF-ɑ secretion, down-regulating nuclear translocation and phosphorylation of p65 and inhibiting MAPK signaling pathways.  相似文献   

19.
IκB kinase (IKK) complex, the master kinase for NF-κB activation, contains two kinase subunits, IKKα and IKKβ. In addition to mediating NF-κB signaling by phosphorylating IκB proteins during inflammatory and immune responses, the activation of the IKK complex also responds to various stimuli to regulate diverse functions independently of NF-κB. Although these two kinases share structural and biochemical similarities, different sub-cellular localization and phosphorylation targets between IKKα and IKKβ account for their distinct physiological and pathological roles. While IKKβ is predominantly cytoplasmic, IKKα has been found to shuttle between the cytoplasm and the nucleus. The nuclear-specific roles of IKKα have brought increasing complexity to its biological function. This review highlights major advances in the studies of the nuclear functions of IKKα and the mechanisms of IKKα nuclear translocation. Understanding the nuclear activity is essential for targeting IKKα for therapeutics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号