首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vaginal mucosa can be colonized by many bacteria including commensal organisms and potential pathogens, such as Staphylococcus aureus. Some strains of S. aureus produce the superantigen toxic shock syndrome toxin-1, which can penetrate the vaginal epithelium to cause toxic shock syndrome. We have observed that a female was mono-colonized with Enterococcus faecalis vaginally as tested in aerobic culture, even upon repeated culture for six months, suggesting this organism was negatively influencing colonization by other bacteria. In recent studies, we demonstrated an “outside-in” mechanism of cytokine signaling and consequent inflammation that facilitates the ability of potential pathogens to initiate infection from mucosal surfaces. Thus, we hypothesized that this strain of E. faecalis may make anti-inflammatory factors which block disease progression of more pathogenic organisms. E. faecalis MN1 inhibited interleukin-8 production from human vaginal epithelial cells in response to the vaginal pathogens Candida albicans, Gardnerella vaginalis, and Neisseria gonorrhoeae, as well as to toxic shock syndrome toxin-1. We further demonstrated that this organism secretes two tetramic acid compounds which appear responsible for inhibition of interleukin-8 production, as well as inhibition of T cell proliferation due to toxic shock syndrome toxin-1. Microbicides that include anti-inflammatory molecules, such as these tetramic acid compounds naturally produced by E. faecalis MN1, may be useful in prevention of diseases that develop from vaginal infections.  相似文献   

2.
Qiu J  Zhang X  Luo M  Li H  Dong J  Wang J  Leng B  Wang X  Feng H  Ren W  Deng X 《PloS one》2011,6(1):e16160

Background

The pathogenicity of staphylococcus aureus is dependent largely upon its ability to secrete a number of virulence factors, therefore, anti-virulence strategy to combat S. aureus-mediated infections is now gaining great interest. It is widely recognized that some plant essential oils could affect the production of staphylococcal exotoxins when used at subinhibitory concentrations. Perilla [Perilla frutescens (L.) Britton], a natural medicine found in eastern Asia, is primarily used as both a medicinal and culinary herb. Its essential oil (perilla oil) has been previously demonstrated to be active against S. aureus. However, there are no data on the influence of perilla oil on the production of S. aureus exotoxins.

Methodology/Principal Findings

A broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of perilla oil against S. aureus strains. Hemolysis, tumour necrosis factor (TNF) release, Western blot, and real-time RT-PCR assays were performed to evaluate the effects of subinhibitory concentrations of perilla oil on exotoxins production in S. aureus. The data presented here show that perilla oil dose-dependently decreased the production of α-toxin, enterotoxins A and B (the major staphylococcal enterotoxins), and toxic shock syndrome toxin 1 (TSST-1) in both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA).

Conclusions/Significance

The production of α-toxin, SEA, SEB, and TSST-1 in S. aureus was decreased by perilla oil. These data suggest that perilla oil may be useful for the treatment of S. aureus infections when used in combination with β-lactam antibiotics, which can increase exotoxins production by S. aureus at subinhibitory concentrations. Furthermore, perilla oil could be rationally applied in food systems as a novel food preservative both to inhibit the growth of S. aureus and to repress the production of exotoxins, particularly staphylococcal enterotoxins.  相似文献   

3.
Staphylococcus aureus causes a wide range of infections in humans, ranging from superficial skin infections to the more serious toxin-mediated diseases such as toxic shock syndrome. Owing to the increasing resistance of this bacterium to a wide range of antibiotics, the need to determine the virulence factors involved in infection is becoming more important as these molecules are potential therapeutic targets. In this study, we have screened for putative exported proteins from S. aureus on the basis that these proteins are likely to be the first point of contact between the bacterium and host during infection. We have constructed gene fusions between S. aureus DNA and a truncated version of the Escherichia coli phoA gene, and we report on the characterization of the recombinants exhibiting alkaline phosphatase activity. As well as known S. aureus proteins, we have identified a number of putative open reading frames that encode proteins similar to those from nonstaphylococcal species and also unique proteins that do not have any homologues on the current databases.  相似文献   

4.
5.
田洪亮  徐刘溢  彭练慈  朱燕 《微生物学报》2023,63(12):4441-4450
金黄色葡萄球菌(Staphylococcus aureus, SA)被认为是最常见的食源性致病菌之一,引起人畜的感染性疾病,导致皮肤、软组织和血液感染,引发脓毒症和中毒性休克综合征。随着抗生素的滥用,金黄色葡萄球菌的耐药性逐渐增强,导致耐甲氧西林金黄色葡萄球菌(methicillin resistant Staphylococcus aureus, MRSA)的出现,并且在全球范围内散播,严重危害公共卫生安全。目前亟需有效控制SA感染的新疗法,因此本文对金黄色葡萄球菌防治技术的研究进展进行综述,并对其防治前景进行了分析,以期对金黄色葡萄球菌尤其是MRSA的控制提供理论指导。  相似文献   

6.
Menstrual toxic shock syndrome (TSS) is a serious illness that afflicts women of premenopausal age worldwide and arises from vaginal infection by Staphylococcus aureus and concurrent production of toxic shock syndrome toxin-1 (TSST-1). Studies have illustrated the capacity of lactobacilli to reduce S. aureus virulence, including the capacity to suppress TSST-1. We hypothesized that an aberrant microbiota characteristic of pathogenic bacteria would induce the increased production of TSST-1 and that this might represent a risk factor for the development of TSS. A S. aureus TSST-1 reporter strain was grown in the presence of vaginal swab contents collected from women with a clinically healthy vaginal status, women with an intermediate status, and those diagnosed with bacterial vaginosis (BV). Bacterial supernatant challenge assays were also performed to test the effects of aerobic vaginitis (AV)-associated pathogens toward TSST-1 production. While clinical samples from healthy and BV women suppressed toxin production, in vitro studies demonstrated that Streptococcus agalactiae and Enterococcus spp. significantly induced TSST-1 production, while some Lactobacillus spp. suppressed it. The findings suggest that women colonized by S. aureus and with AV, but not BV, may be more susceptible to menstrual TSS and would most benefit from prophylactic treatment.  相似文献   

7.

Background

Glycerol monolaurate (GML), a 12 carbon fatty acid monoester, inhibits Staphylococcus aureus growth and exotoxin production, but is degraded by S. aureus lipase. Therefore, dodecylglycerol (DDG), a 12 carbon fatty acid monoether, was compared in vitro and in vivo to GML for its effects on S. aureus growth, exotoxin production, and stability.

Methodology/Principal Findings

Antimicrobial effects of GML and DDG (0 to 500 µg/ml) on 54 clinical isolates of S. aureus, including pulsed-field gel electrophoresis (PFGE) types USA200, USA300, and USA400, were determined in vitro. A rabbit Wiffle ball infection model assessed GML and DDG (1 mg/ml instilled into the Wiffle ball every other day) effects on S. aureus (MN8) growth (inoculum 3×108 CFU/ml), toxic shock syndrome toxin-1 (TSST-1) production, tumor necrosis factor-α (TNF-α) concentrations and mortality over 7 days. DDG (50 and 100 µg/ml) inhibited S. aureus growth in vitro more effectively than GML (p<0.01) and was stable to lipase degradation. Unlike GML, DDG inhibition of TSST-1 was dependent on S. aureus growth. GML-treated (4 of 5; 80%) and DDG-treated rabbits (2 of 5; 40%) survived after 7 days. Control rabbits (5 of 5; 100%) succumbed by day 4. GML suppressed TNF-α at the infection site on day 7; however, DDG did not (<10 ng/ml versus 80 ng/ml, respectively).

Conclusions/Significance

These data suggest that DDG was stable to S. aureus lipase and inhibited S. aureus growth at lower concentrations than GML in vitro. However, in vivo GML was more effective than DDG by reducing mortality, and suppressing TNF-α, S. aureus growth and exotoxin production, which may reduce toxic shock syndrome. GML is proposed as a more effective anti-staphylococcal topical anti-infective candidate than DDG, despite its potential degradation by S. aureus lipase.  相似文献   

8.
9.
Staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin-1 are the super antigens responsible for diseases such as staphylococcal food poisoning and toxic shock syndrome. At low serum concentrations, SEB can trigger toxic shock, profound hypotension and multi organ failure and hence is recognized as biowarfare molecule. In this study, a multidomain fusion protein (r-TE) was generated with specificity for SEB and toxic shock syndrome toxin (Tsst-1). The fusion gene comprising the conserved regions of seb and the tsst genes was codon-optimized for expression in Escherichia coli and encoded a 26 kDa recombinant multidomain chimeric protein (r-TE). Hyperimmune antiserum raised against r-TE specifically reacted with SEB (~28 kDa) and Tsst-1 (~22 kDa) components during Western blot analysis and by plate ELISA in confirmed toxin producing strains of S. aureus. The antigenicity of the SEB component of the r-TE protein was also confirmed using TECRA kit. The described procedure of creating a single protein molecule carrying components of two different toxins whilst still retaining the original antigenic determinants of individual toxins proved highly advantageous in the development of rapid, reliable and cost effective immunoassays and may also have the potential to serve as candidate molecule for vaccine studies.  相似文献   

10.
The pyrogenic toxin toxic shock syndrome toxin-1 fromStaphylococcus aureusis a causative agent of the toxic shock syndrome disease. It belongs to a family of proteins known as superantigens that cross-link major histocompatibility class II molecules and T-cell receptors leading to the activation of a substantial number of T cells. The crystal structure of this protein has been refined to 2.07 Å with anRcrystvalue of 20.4% for 51,240 reflections. The final model contains three molecules in the asymmetric unit with good stereochemistry and a root-mean-square deviation of 0.009 Å and 1.63° from ideality for bond lengths and bond angles, respectively. The overall fold is considerably similar to that of other known microbial superantigens (staphylococcal enterotoxins). However, a detailed structural analysis shows that toxic shock syndrome toxin-1 lacks several structural features that affect its specificity for Vβ elements of the T-cell receptor and also its recognition by major histocompatibility class II molecules.  相似文献   

11.
12.
Tumour necrosis factor (TNF) is a polypeptide hormone produced in vivo by activated macrophages and lymphocytes. TNF has diverse effects in vivo and has a physiological role as an immune modulator, as a mediator of the immune response, both through activation of neutrophils and eosinophils, and also affects the vascular endothelium. TNF also has antiviral activity and causes alterations in lipid metabolism. In disease states excessive production of TNF may have adverse affects. TNF has been implicated as a mediator of endotoxic shock, inflammatory joint disease, immune deficiency states, allograft rejection, and in the cachexia associated with malignant disease and some parasitic infections. When used in pharmacological doses, TNF is cytotoxic to many malignant cells in vitro and in vivo. The mechanisms underlying cytotoxicity are not fully elucidated but involve both a direct toxic effect to the cell and an indirect effect on tumour vasculature. Cytotoxicity is not universal and TNF may act as a differentiating agent or growth factor for some haematological cell types. So far the clinical application of TNF has been as a treatment for cancer in Phase I and II trials in patients with advanced disease and its efficacy here is still unproven. TNF may have potential for clinical application in combination therapy for cancer. There is experimental evidence for its interaction with other biological agents and cytotoxic drugs. The use of specific antibodies to inhibit production of TNF, or other agents to antagonise the toxic effects of TNF may have clinical relevance in counteracting septic shock and the clinical manifestations of TNF in inflammatory and neoplastic disease.  相似文献   

13.
Staphylococcus aureus has emerged as a significant pathogen causing severe invasive disease in otherwise healthy people. Despite considerable advances in understanding the epidemiology, resistance mechanisms, and virulence factors produced by the bacteria, there is limited knowledge of the in vivo host immune response to acute, invasive S. aureus infections. Herein, we report that peripheral blood mononuclear cells from patients with severe S. aureus infections demonstrate a distinctive and robust gene expression profile which is validated in a distinct group of patients and on a different microarray platform. Application of a systems-wide modular analysis framework reveals significant over-expression of innate immunity genes and under-expression of genes related to adaptive immunity. Simultaneous flow cytometry analyses demonstrated marked alterations in immune cell numbers, with decreased central memory CD4 and CD8 T cells and increased numbers of monocytes. CD14+ monocyte numbers significantly correlated with the gene expression levels of genes related to the innate immune response. These results demonstrate the value of applying a systems biology approach that reveals the significant alterations in the components of circulating blood lymphocytes and monocytes in invasive S. aureus infections.  相似文献   

14.
Staphylococcus aureus infections present an enormous global health concern complicated by an alarming increase in antibiotic resistance. S. aureus is among the few bacterial species that express nitric-oxide synthase (bNOS) and thus can catalyze NO production from l-arginine. Here we generate an isogenic bNOS-deficient mutant in the epidemic community-acquired methicillin-resistant S. aureus (MRSA) USA300 clone to study its contribution to virulence and antibiotic susceptibility. Loss of bNOS increased MRSA susceptibility to reactive oxygen species and host cathelicidin antimicrobial peptides, which correlated with increased MRSA killing by human neutrophils and within neutrophil extracellular traps. bNOS also promoted resistance to the pharmaceutical antibiotics that act on the cell envelope such as vancomycin and daptomycin. Surprisingly, bNOS-deficient strains gained resistance to aminoglycosides, suggesting that the role of bNOS in antibiotic susceptibility is more complex than previously observed in Bacillus species. Finally, the MRSA bNOS mutant showed reduced virulence with decreased survival and smaller abscess generation in a mouse subcutaneous infection model. Together, these data indicate that bNOS contributes to MRSA innate immune and antibiotic resistance phenotypes. Future development of specific bNOS inhibitors could be an attractive option to simultaneously reduce MRSA pathology and enhance its susceptibility to commonly used antibiotics.  相似文献   

15.
16.
In this study we examined the presence of Staphylococcus aureus and staphylococcal enterotoxin A (SEA) in 20 industrial breaded chicken products obtained from different retail butchers and supermarket stores in Italy. The levels of contamination in the products analyzed were quite low, although the pH values and water activities (aw) in the samples considered were in ranges favorable for S. aureus growth. As demonstrated by phenotypic and molecular characterization, in spite of the high percentage of coagulase-positive Staphylococcus strains, only three strains could be referred to the species S. aureus. Moreover, all the strains were negative in PCR assays targeting staphylococcal enterotoxin genes (seA to seE, seG to seJ, and seM to seO), as well as the toxic shock syndrome toxin 1 gene, and no SEA was detected in the retail breaded chicken samples analyzed by a reversed passive latex agglutination assay or by Western blotting. Hence, we evaluated the thermal resistance of two strains of SEA-producing S. aureus in a laboratory-scale preparation of precooked breaded chicken cutlets. The heat treatment employed in the manufacture determined the inactivation of S. aureus cells, but the preformed SEA remained active during product storage at 4°C. The presence of the staphylococci and, in particular, of S. aureus in the retail breaded chicken products analyzed is a potential health risk for consumers since the pH and aw values of these kinds of products are favorable for S. aureus growth. The thermal process used during their manufacture can limit staphylococcal contamination but cannot eliminate preformed toxins.  相似文献   

17.
Staphylococcus aureus USA300, the clonal type associated with epidemic community-acquired methicillin-resistant S. aureus (MRSA) infections, displays the giant protein Ebh on its surface. Mutations that disrupt the ebh reading frame increase the volume of staphylococcal cells and alter the cross wall, a membrane-enclosed peptidoglycan synthesis and assembly compartment. S. aureus ebh variants display increased sensitivity to oxacillin (methicillin) as well as susceptibility to complement-mediated killing. Mutations in ebh are associated with reduced survival of mutant staphylococci in blood and diminished virulence in mice. We propose that Ebh, following its secretion into the cross wall, contributes to the characteristic cell growth and envelope assembly pathways of S. aureus, thereby enabling complement resistance and the pathogenesis of staphylococcal infections.  相似文献   

18.
Staphylococcus aureus and Staphylococcus epidermidis can cause serious chronic and recurrent infections that are difficult to eradicate. An important pathogenicity factor in these infections caused by S. aureus is its ability to be internalized by non‐professional phagocytes thereby evading the host immune system and antibiotic treatment. Here, we report a novel mechanism involved in staphylococcal internalization by host cells, which is mediated by the major autolysin/adhesins Atl and AtlE from S. aureus and S. epidermidis respectively. In a flow cytometric internalization assay, atl and atlE mutants are significantly reduced in their capacities to be internalized by endothelial cells. Moreover, pre‐incubation of endothelial cells with recombinant Atl dose‐dependently inhibited internalization. As putative Atl‐host cell receptor, the heat shock cognate protein Hsc70 was identified by mass spectrometry. The importance of Hsc70 in internalization was demonstrated by the inhibition of S. aureus internalization with anti‐Hsc70 antibodies. In conclusion, this novel Atl‐ or AtlE‐mediated internalization mechanism may represent a ‘back‐up’ mechanism in S. aureus internalization, while it may represent the major or even sole mechanism involved in the internalization of coagulase‐negative staphylococci and thus may play an important role in the pathogenesis of chronic and relapsing infections with these serious pathogens.  相似文献   

19.
20.
Innate immunity involving antimicrobial peptides represents an integrated and highly effective system of molecular and cellular mechanisms that protects host against infections. One of the most frequent hospital-acquired pathogens, Staphylococcus aureus, capable of producing proteolytic enzymes, which can degrade the host defence agents and tissue components. Numerous antimicrobial peptides derived from chromogranins, are secreted by nervous, endocrine and immune cells during stress conditions. These kill microorganisms by their lytic effect at micromolar range, using a pore-forming mechanism against Gram-positive bacteria, filamentous fungi and yeasts. In this study, we tested antimicrobial activity of chromogranin A-derived peptides (catestatin and cateslytin) against S. aureus and analysed S. aureus-mediated proteolysis of these peptides using HPLC, sequencing and MALDI-TOF mass spectrometry. Interestingly, this study is the first to demonstrate that cateslytin, the active domain of catestatin, is active against S. aureus and is interestingly resistant to degradation by S. aureus proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号