首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial lipase from Thermomyces lanuginosus (formerly Humicola lanuginosa) was immobilized by covalent binding on a novel microporous styrene–divinylbenzene polyglutaraldehyde copolymer (STY–DVB–PGA). The response surface methodology (RSM) was used to optimize the conditions for the maximum activity and to understand the significance and interaction of the factors affecting the specific activity of immobilized lipase. The central composite design was employed to evaluate the effects of enzyme concentration (4–16%, v/v), pH (6.0–8.0), buffer concentration (20–100 mM) and immobilization time (8–40 h) on the specific activity. The results indicated that enzyme concentration, pH and buffer concentration were the significant factors on the specific activity of immobilized lipase and quadratic polynomial equation was obtained for specific activity. The predicted specific activity was 8.78 μmol p-NP/mg enzyme min under the optimal conditions and the subsequent verification experiment with the specific activity of 8.41 μmol p-NP/mg enzyme min confirmed the validity of the predicted model. The lipase loading capacity was obtained as 5.71 mg/g support at the optimum conditions. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation (12%) occurred after being used repeatedly for 10 consecutive batches with each of 24 h. The effect of methanol and tert-butanol on the specific activity of immobilized lipase was investigated. The immobilized lipase was almost stable in tert-butanol (92%) whereas it lost most of its activity in methanol (80%) after 15 min incubation.  相似文献   

2.
To develop a robust whole-cell biocatalyst that works well at moderately high temperature (40–50 °C) with organic solvents, a thermostable lipase from Geobacillus thermocatenulatus (BTL2) was introduced into an Aspergillus oryzae whole-cell biocatalyst. The lipase-hydrolytic activity of the immobilized A. oryzae (r-BTL) was highest at 50 °C and was maintained even after an incubation of 24-h at 60 °C. In addition, r-BTL was highly tolerant to 30% (v/v) organic solvents (dimethyl carbonate, ethanol, methanol, 2-propanol or acetone). The attractive characteristics of r-BTL also worked efficiently on palm oil methanolysis, resulting in a nearly 100% conversion at elevated temperature from 40 to 50 °C. Moreover, r-BTL catalyzed methanolysis at a high methanol concentration without a significant loss of lipase activity. In particular, when 2 molar equivalents of methanol were added 2 times, a methyl ester content of more than 90% was achieved; the yield was higher than those of conventional whole-cell biocatalyst and commercial Candida antarctica lipase (Novozym 435). On the basis of the results regarding the excellent lipase characteristics and efficient biodiesel production, the developed whole-cell biocatalyst would be a promising biocatalyst in a broad range of applications including biodiesel production.  相似文献   

3.
《Process Biochemistry》2007,42(4):518-526
An alkaline lipase from Burkholderia multivorans was produced within 15 h of growth in a 14 L bioreactor. An overall 12-fold enhanced production (58 U mL−1 and 36 U mg−1 protein) was achieved after medium optimization following the “one-variable-at-a-time” and the statistical approaches. The optimal composition of the lipase production medium was determined to be (% w/v or v/v): KH2PO4 0.1; K2HPO4 0.3; NH4Cl 0.5; MgSO4·7H2O 0.01; yeast extract 0.36; glucose 0.1; olive oil 3.0; CaCl2 0.4 mM; pH 7.0; inoculum density 3% (v/v) and incubation time 36 h in shake flasks. Lipase production was maximally influenced by olive oil/oleic acid as the inducer and yeast extract as the additive nitrogen. Plackett–Burman screening suggested catabolite repression by glucose. Amongst the divalent cations, Ca2+ was a positive signal while Mg2+ was a negative signal for lipase production. RSM predicted that incubation time, inoculum density and oil were required at their higher levels (36 h, 3% (v/v) and 3% (v/v), respectively) while glucose and yeast extract were required at their minimal levels for maximum lipase production in shake flasks. The production conditions were validated in a 14 L bioreactor where the incubation time was reduced to 15 h.  相似文献   

4.
Mesoporous activated carbon (MAC) derived from rice husk is used for the immobilization of acidic lipase (ALIP) produced from Pseudomonas gessardii. The purified acidic lipase had the specific activity and molecular weight of 1473 U/mg and 94 kDa respectively. To determine the optimum conditions for the immobilization of lipase onto MAC, the experiments were carried out by varying the time (10–180 min), pH (2–8), temperature (10–50 °C) and the initial lipase activity (49 × 103, 98 × 103, 147 × 103 and 196 × 103 U/l in acetate buffer). The optimum conditions for immobilization of acidic lipase were found to be: time—120 min; pH 3.5; temperature—30 °C, which resulted in achieving a maximum immobilization of 1834 U/g. The thermal stability of the immobilized lipase was comparatively higher than that in its free form. The free and immobilized enzyme kinetic parameters (Km and Vmax) were found using Michaelis–Menten enzyme kinetics. The Km values for free enzyme and immobilized one were 0.655 and 0.243 mM respectively. The immobilization of acidic lipase onto MAC was confirmed using Fourier Transform-Infrared Spectroscopy, X-ray diffraction analysis and scanning electron microscopy.  相似文献   

5.
《Process Biochemistry》2007,42(6):988-994
A lipase from Bacillus cereus C71 was purified to homogeneity by ammonium sulfate precipitation, followed by Phenyl-Sepharose chromatography, DEAE ion exchange chromatography and CIM® QA chromatography. This purification procedure resulted in a 1092-fold purification of lipase with 18% yield. The molecular mass of the purified enzyme was determined to be approximately 42 kDa by SDS-PAGE and mass spectrometer. The lipase was stable in the pH range of 8.5–10.0, with the optimum pH 9.0. The enzyme exhibited maximum activity at 33 °C and retained 92% of original activity after incubation at 35 °C for 3 h. The protein hydrolyzed p-nitrophenyl esters with acyl chain lengths between C4 and C12. Enzyme activity was strongly inhibited in the presence of Cu2+ and Zn2+ but promoted by non-ionic surfactants. The lipase demonstrated higher enantioselectivity toward R-isomer of ethyl 2-arylpropanoate than the commercial lipases, and can be used potentially as a catalyst to prepare optically pure pharmaceuticals.  相似文献   

6.
The lipase secreted by Burkholderia cepacia ATCC 25416 was particularly attractive in detergent and leather industry due to its specific characteristics of high alkaline and thermal stability. The lipase gene (lipA), lipase chaperone gene (lipB), and native promoter upstream of lipA were cloned. The lipA was composed of 1095 bp, corresponding to 364 amino acid residues. The lipB located immediately downstream of lipA was composed of 1035 bp, corresponding to 344 amino acid residues. The lipase operon was inserted into broad host vector pBBRMCS1 and electroporated into original strain. The homologous expression of recombinant strain showed a significant increase in the lipase activity. LipA was purified by three-step procedure of ammonium sulfate precipitation, phenyl-sepharose FF and DEAE-sepharose FF. SDS-PAGE showed the molecular mass of the lipase was 33 kDa. The enzyme optimal temperature and pH were 60 °C and 11.0, respectively. The enzyme was stable at 30–70 °C. After incubated in 70 °C for 1 h, enzyme remained 72% of its maximal activity. The enzyme exhibited a good stability at pH 9.0–11.5. The lipase preferentially hydrolyzed medium-chain fatty acid esters. The enzyme was strongly activated by Mg2+, Ca2+, Cu2+, Zn2+, Co2+, and apparently inhibited by PMSF, EDTA and also DTT with SDS. The enzyme was compatible with various ionic and non-ionic surfactants as well as oxidant H2O2. The enzyme had good stability in the low- and non-polar solvents.  相似文献   

7.
The enzymatic route for biodiesel production has been noted to be cost ineffective due to the high cost of biocatalysts. Reusing the biocatalyst for successive transesterification cycles is a potential solution to address such cost inefficiency. However, when organic solvent like methanol is used as acyl-acceptor in the reaction, the biocatalyst (lipase) gets severely inactivated due to the inhibitory effect of undissolved methanol in the reaction medium. Thus, organic solvent–tolerant lipase is highly desirable for enzymatic transesterification. In response to such desirability, a lipase (LS133) possessing aforesaid characteristic was extracted from Streptomyces sp. CS133. Relative molecular mass of the purified LS133 was estimated to be 39.8 kDa by SDS-PAGE. Lipase LS133 was stable in pH range 5.0–9.0 and at temperature lower than 50 °C while its optimum lipolytic activity was achieved at pH 7.5 and 40 °C. It showed the highest hydrolytic activity towards long chain p-nitrophenyl palmitate with Km and Vmax values of 0.152 mM and 270.2 mmol min?1 mg?1, respectively. It showed non-position specificity for triolein hydrolysis. The first 15 amino acid residues of its N-terminal sequence, AIPLRQTLNFQAXYQ, were noted to have partial similarity with some of the previously reported microbial lipases. Its catalytic involvement in biodiesel production process was confirmed by performing enzymatic transesterification of vegetable oils with methanol.  相似文献   

8.
A novel organic solvent-stable and thermotolerant lipase gene (designated ostl28) was cloned from a metagenomic library and overexpressed in Escherichia coli BL21 (DE3) in soluble form. OSTL28 contained 262 amino acids with relative molecular mass 30.1 kDa and isoelectric point 9.7. The optimum pH and temperature of the OSTL28 were 7.5 and 60 °C, respectively. OSTL28 was stable in the pH range of 4.5–9.5 and at temperatures below 65 °C. The enzyme could hydrolyze a wide range of ρ-nitrophenyl esters, but its best substrate is ρ-nitrophenyl laurate with the highest activity of 236 U/mg (54,000 U/L). The recombinant OSTL28 was highly resisted to organic solvents, especially glycerol and methanol. The metal ions, with the exception of Hg2+ and Ag+, did not have any influence on enzyme activity, whereas non-ionic surfactants and Al3+ slightly activated the enzyme. These features indicate that it is a potential biocatalyst for biodiesel production.  相似文献   

9.
An organic solvent-stable alkaline protease producing bacterium was isolated from the crude oil contaminant soil and identified as Bacillus licheniformis. The enzyme retained more than 95% of its initial activity after pre-incubation at 40 °C for 1 h in the presence of 50% (v/v) organic solvents such as DMSO, DMF, and cyclohexane. The protease was active in a broad range of pH from 8.0 to 12.0 with the optimum pH 9.5. The optimum temperature for this protease activity was 60 °C, and the enzyme remained active after incubation at 50–60 °C for 1 h. This organic solvent-stable protease could be used as a biocatalyst for organic solvent-based enzymatic synthesis.  相似文献   

10.
A biocatalyst with high activity retention of lipase was fabricated by the covalent immobilization of Candida rugosa lipase on a cellulose nanofiber membrane. This nanofiber membrane was composed of nonwoven fibers with 200 nm nominal fiber diameter. It was prepared by electrospinning of cellulose acetate (CA) and then modified with alkaline hydrolysis to convert the nanofiber surface into regenerated cellulose (RC). The nanofiber membrane was further oxidized by NaIO4. Aldehyde groups were simultaneously generated on the nanofiber surface for coupling with lipase. Response surface methodology (RSM) was applied to model and optimize the modification conditions, namely NaIO4 content (2–10 mg/mL), reaction time (2–10 h), reaction temperature (25–35 °C) and reaction pH (5.5–6.5). Well-correlating models were established for the residual activity of the immobilized enzyme (R2 = 0.9228 and 0.8950). We found an enzymatic activity of 29.6 U/g of the biocatalyst was obtained with optimum operational conditions. The immobilized lipase exhibited significantly higher thermal stability and durability than equivalent free enzyme.  相似文献   

11.
To improve the production of biodiesel by enzymatic conversion of triglycerides in cottonseed oil, compatible solutes were added to the solvent-free methanolysis system to prevent competitive methanol inhibition on the immobilized lipase (Novozym® 435). The results indicated that the addition of ectoine increased biodiesel synthesis using a three-step methanol addition process. The concentration of methyl ester (ME) reached a maximum of 95.0% in the presence of 1.1 mmol/l ectoine, an increase of 20.9% compared to that in the absence of ectoine. On the other hand, excess ectoine decreased the ME concentration. Ectoine was also shown to enhance reuse of the immobilized lipase, significantly improving ME concentrations in each recycling test. Total concentrations of ME with added ectoine were about 1.5 times that without ectoine during five recycling tests (molar ratio of cottonseed oil to methanol, 1:4). Enzymatic reaction kinetics showed, in the concentration ranges of 0.8–1.14 mol/l and 0.03–8 mol/l for triglyceride and methanol, respectively, that ectoine had no effect on the initial reaction rates when methanol concentrations were below 0.5 mol/l. When methanol concentration exceeded 0.5 mol/l, the addition of 0.8 mmol/l ectoine increased the initial reaction rates, and the lipase exhibited a lower affinity for methanol and higher affinity for triglyceride (kinetic parameters of KmA increase, KmTG decrease). However, the initial reaction rates decreased significantly when 8 mmol/l ectoine was added, with the lipase having higher affinity for methanol and lower affinity for triglyceride (KmA decrease, KmTG increase). The supplementation of ectoine provided a new method for the purpose of improving yield of biodiesel catalyzed by enzyme.  相似文献   

12.
Expression of recombinant proteins as inclusion bodies in bacteria is one of the most efficient ways to produce cloned proteins, as long as the inclusion bodies can be successfully refolded. In this study, the different parameters were investigated and optimized on the refolding of denatured lipase. The maximum lipase activity of 5000 U/L was obtained after incubation of denatured enzyme in a refolding buffer containing 20 mM Tris–HCl (pH 7.0), 1 mM Ca2+ at 20 °C. Then, the refolded lipase was purified to homogeneity by anion exchange chromatography. The purified refolded lipase was stable in broad ranges of temperatures and pH values, as well as in a series of water-miscible organic solvents. In addition, some water-immiscible organic solvents, such as petroleum ether and isopropyl ether, could reduce the polarity and increase the nonpolarity of the refolding system. The results of Fourier transform infrared (FT-IR) microspectroscopy were the first to confirm that lipase refolding could be further improved in the presence of organic solvents. The purified refolded lipase could enantioselectively hydrolyze trans-3-(4-methoxyphenyl) glycidic acid methyl ester [(±)-MPGM]. These features render the lipase attraction for biotechnological applications in the field of organic synthesis and pharmaceutical industry.  相似文献   

13.
《Process Biochemistry》2010,45(3):346-354
The gene coding for the intracellular organic solvent-tolerant lipase of Pseudomonas aeruginosa strain S5 was isolated from a genomic DNA library and cloned into pRSET. The cloned sequence included two open reading frames (ORF) of 1575 bp for the first ORF (ORF1), and 582 bp for the second ORF (ORF2). The ORF2, known as chaperone, plays an important role in the expression of the S5 gene. The ORF2 is located downstream of lipase gene, and functions as the act gene for ORF1. The conserved pentapeptide, Gly-X-Ser-X-Gly, is located in the ORF1. A sequence coding for a catalytic triad that resembles that of a serine protease, consisting of serine, histidine, and aspartic acid or glutamic acid residues, was present in the lipase gene. Expression of the S5 lipase gene in E. coli resulted in a 100-fold increase in enzyme activity 9 h after induction with 0.75 mM IPTG. The recombinant protein revealed a size of 60 kDa on SDS-PAGE. The Lip S5 gene was stable in the presence of 25% (v/v) n-dodecane and n-tetradecane after 2 h incubation at 37 °C.  相似文献   

14.
Rhizopus chinensis produces two lipases that catalyze ester synthesis when cultured under solid-state fermentation. The Lip2 was purified to homogeneity by ammonium sulphate precipitation, hydrophobic interaction chromatography and gel filtration chromatography. It has an apparent molecular weight of 33 kDa estimated from SDS–PAGE and 32 kDa calculated from analytical gel permeation, with synthetic activity and purification fold of 96.8 U/mg and 138.3, respectively. Maximum hydrolytic activity was obtained at pH 8.0–8.5 and 40 °C using pNPP as substrate. Slight activation of the enzyme was observed when Mn2+ is present. The enzyme was most active on p-nitrophenyl laurate (C12). The purified lipase exhibited maximum synthetic activity at pH memory of 6.0 and 30 oC. Most of ethyl esters synthesized by lyophilized enzyme achieved good yields (>90%), and caprylic acid served as the best acyl donor. The enzyme presented a particular affinity for ethanol, n-propanol and n-hexanol, with conversion of 92%, 93% and 92%, respectively, after 20 h incubation.  相似文献   

15.
A solvent-tolerant bacterium Burkholderia ambifaria YCJ01 was newly isolated by DMSO enrichment of the medium. The lipase from the strain YCJ01 was purified to homogeneity with apparent molecular mass of 34 kDa determined by SDS-PAGE. The purified lipase exhibited maximal activity at a temperature of 60 °C and a pH of 7.5. The lipase was very stable below 55 °C for 7 days (remaining 80.3% initial activity) or at 30 °C for 60 days. PMSF significantly inhibited the lipase activity, while EDTA had no effect on the activity. Strikingly, the lipase showed distinct super-stability to the most tested hydrophilic and hydrophobic solvents (25%, v/v) for 60 days, and different optimal pH in contrast with the alkaline lipase from B. cepacia S31. The lipase demonstrated excellent enantioselective transesterification toward the S-isomer of mandelic acid with a theoretical conversion yield of 50%, eep of 99.9% and ees of 99.9%, which made it an exploitable biocatalyst for organic synthesis and pharmaceutical industries.  相似文献   

16.
An extracellular lipase gene ln1 from thermophilic fungus Thermomyces lanuginosus HSAUP0380006 was cloned through RT-PCR and RACE amplification. Its coding sequence predicted a 292 residues protein with a 17 amino acids signal peptide. The deduced amino acids showed 78.4% similarity to another lipase lgy from T. lanuginosus while shared low similarity with other fungi lipases. Higher frequencies hydrophobic amino acids related to lipase thermal stability, such as Ala, Val, Leu and Gly were observed in this lipase (named LN). The sequence, -Gly-His-Ser-Leu-Gly-, known as a lipase-specific consensus sequence of mould, was also found in LN. High level expression for recombinant lipase was achieved in Pichia pastoris GS115 under the control of strong AOX1 promoter. It was purified to homogeneity through only one step DEAE-Sepharose anion exchange chromatography and got activity of 1328 U/ml. The molecular mass of one single band of this lipase was estimated to be 33 kDa by SDS-PAGE. The enzyme was stable at 60 °C and kept 65% enzyme activity after 30 min incubation at 70 °C. It kept half-activity after incubated for 40 min at 80 °C. The optimum pH for enzyme activity was 9.0 and the lipase was stable from pH 8.0 to 12.0. Lipase activity was enhanced by Ca2+ and inhibited by Fe2+, Zn2+, K+, and Ag+. The cell-free enzyme hydrolyzed and synthesized esters efficiently, and the synthetic efficiency even reached 81.5%. The physicochemical and catalytic properties of the lipase are extensively investigated for its potential industrial applications.  相似文献   

17.
A Metarhizium anisopliae spore surface lipase (MASSL) strongly bound to the fungal spore surface has been purified by ion exchange chromatography on DEAE sepharose followed by ultrafiltration and hydrophobic interaction chromatography on phenyl sepharose. Electrophoretic analyses showed that the molecular weight of this lipase is ~66 kDa and pI is 5.6. Protein sequencing revealed that identified peptides in MASSL shared identity with several lipases or lipase-related sequences. The enzyme was able to hydrolyze triolein, the animal lipid cholesteryl stearate and all ρNP ester substrates tested with some preference for esters with a short acyl chain. The values of Km and Vmax for the substrates ρNP palmitate and ρNP laurate were respectively 0.474 mM and 1.093 mMol min?1 mg?1 and 0.712 mM and 5.696 mMol min?1 mg?1. The optimum temperature of the purified lipase was 30 °C and the enzyme was most stable within the most acid pH range (pH 3–6). Triton X-100 increased and SDS reduced enzyme lipolytic activity. MASSL activity was stimulated by Ca2+, Mg2+ and Co2+ and inhibited by Mn2+. The inhibitory effect on activity exerted by EDTA and EGTA was limited, while the lipase inhibitor Ebelactone B completely inhibited MASSL activity as well as PMSF. Methanol 0.5% apparently did not affect MASSL activity while β-mercaptoethanol activated the enzyme.  相似文献   

18.
New tyrosyl ester derivative, a naturally occurring phenol with interesting biological properties, has been synthesized in good yield by a direct esterification of tyrosol (Ty) with p-hydroxyphenylacetic acid (p-HPA) using Candida antarctica lipase as a catalyst. The response surface methodology was used to modulate the effects of the enzyme amount (10–50 mg), the tert-butanol/hexane (v/v) ratio (0.16–0.84), the temperature (35–55 °C) and the reaction time (15–45 h) on the tyrosyl hydroxyphenylacetate (Ty-HPA) conversion yield. Under the optimal predicted conditions (enzyme amount: 10 mg, solvents volume ratio 0.16, reaction temperature; 45 °C and 34 h of incubation), a high conversion yield of 79.33 ± 4% was reached. The obtained ester was purified and characterized by NMR, LC/MS and FT-IR methods. ABTS free radical quenching potency demonstrated that the esterified tyrosol (Ty-HPA) was more effective than the natural separated antioxidants: Ty and p-HPA. Furthermore, when used at a non-cytotoxic concentration (100 μM), tyrosyl ester showed significant effectiveness in preventing iron-induced oxidative stress in blood cells compared to the two separated compounds. The antibacterial activity of Ty, p-HPA, mixed solution of Ty + p-HPA and Ty-HPA was performed by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a micro-well dilution method. Compared to the separated substrates, synthesized ester exhibits the most antibacterial effect mainly against Gram+ bacteria.  相似文献   

19.
Burkholderia sp. C20 strain isolated from food wastes produces a lipase with hydrolytic activities towards olive oil. Fermentation strategies for efficient production of this Burkholderia lipase were developed using a 5-L bench top bioreactor. Critical factors affecting the fermentative lipase production were examined, including pH, aeration rate, agitation rate, and incubation time. Adjusting the aeration rate from 0.5 to 2 vvm gave an increase in the overall lipase productivity from 0.057 to 0.076 U/(ml h), which was further improved to 0.09 U/(ml h) by adjusting the agitation speed to 100 rpm. The production of Burkholderia lipase followed mixed growth-associated kinetics with a yield coefficient of 524 U/g-dry-cell-weight. The pH optimum for cell growth and lipase production was different at 7.0 and 6.0, respectively. Furthermore, stepwise addition of carbon substrate (i.e., olive oil) enhanced lipase production in both flask and bioreactor experiments.  相似文献   

20.
Lipase (EC.3.1.1.3) from Candida sp. 99-125 was separated into four isoforms (isoform A, isoform B, isoform C, and isoform D) by two steps of ion exchange chromatography. As analyzed on SDS- and non-denaturing PAGE, the four isoforms were homogenous and had the same molecular weight of approximate 38 kDa. MALDI-TOF peptide mass fingerprinting maps and circular dichroism spectra showed the isoforms had similar peptide patterns belonging to the same protein encoded by the YLlip2 gene and different secondary structures. The isoforms had a little distinct optimum temperature in the range of 20–35 °C, and the same optimum pH (8.0). They remained to be active in methanol, ethanol and ethylene glycol at the concentration of 10% and 20% (v/v) and acetone at the concentration of 10% (v/v), and sensitive to EDTA. Triton X-100, Sodium cholate and CHAPS slightly increased their activities. The metal ion Ca2+ and Mg2+ had mild effect on lipase activity. The isoforms showed a preference for long chain fatty acid triglyceride (triolein and olive). The lipase purified by one step of ion exchange chromatography and isoforms were less active than crude enzyme to catalyze cetyl alcohol and oleic acid in n-hexane, whereas the presence of small concentration of added water dramatically activated crude lipase but less the purified preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号