首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Phosphorylation of theα subunit of the sodium channel by protein kinase C   总被引:5,自引:0,他引:5  
The alpha subunit of the purified voltage-sensitive sodium channel from rat brain is rapidly phosphorylated to the extent of 3-4 mol phosphate/mol by purified protein kinase C. The alpha subunit of the native sodium channel in synaptosomal membranes is also phosphorylated by added protein kinase C as assessed by specific immunoprecipitation and polyacrylamide gel electrophoresis of labeled membranes. Our results suggest coordinate regulation of sodium channel phosphorylation state by cAMP-dependent and calcium/phospholipid-dependent protein kinases.  相似文献   

2.
《Current biology : CB》1999,9(17):983-S1
Inositol lipid synthesis is regulated by several distinct families of enzymes [1]. Members of one of these families, the type II phosphatidylinositol phosphate kinases (PIP kinases), are 4-kinases and are thought to catalyse a minor route of synthesis of the multifunctional phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) from the inositide PI(5)P [2]. Here, we demonstrate the partial purification of a protein kinase that phosphorylates the type IIα PIP kinase at a single site unique to that isoform – Ser304. This kinase was identified as protein kinase CK2 (formerly casein kinase 2). Mutation of Ser304 to aspartate to mimic its phosphorylation had no effect on PIP kinase activity, but promoted both redistribution of the green fluorescent protein (GFP)-tagged enzyme in HeLa cells from the cytosol to the plasma membrane, and membrane ruffling. This effect was mimicked by mutation of Ser304 to alanine, although not to threonine, suggesting a mechanism involving the unmasking of a latent membrane localisation sequence in response to phosphorylation.  相似文献   

3.
4.
Cancer drugs suppress tumor cell growth by inhibiting specific cellular targets. However, most drugs also activate several cellular nonspecific stress pathways, and the implications of these off-target effects are mostly unknown. Here, we report that p38γ, but not p38α, MAPK is specifically activated by treatment of breast cancer cells with topoisomerase II (Topo II) drugs, whereas paclitaxel (Taxol) does not have this effect. The activated p38γ in turn phosphorylates and stabilizes Topo IIα protein, and this enhances the growth inhibition by Topo II drugs. Moreover, p38γ activity was shown to be necessary and sufficient for Topo IIα expression, the drug-p38γ-Topo IIα axis is only detected in intrinsically sensitive but not resistant cells, and p38γ is co-overexpressed with Topo IIα protein in primary breast cancers. These results reveal a new paradigm in which p38γ actively regulates the drug-Topo IIα signal transduction, and this may be exploited to increase the therapeutic activity of Topo II drugs.  相似文献   

5.
Protein kinase CK2 has many established in vitro substrates, but it is only within the past few years that we have begun to ascertain which of these are its real physiological targets, how their phosphorylation may contribute towards regulating normal cell physiology, and how phosphorylation of these proteins might influence the development of diseases such as cancer. One of the well-characterised in vitro substrates for CK2 is the tumour suppressor protein, p53. However, the physiological nature of this interaction has never been fully established. In the present article, we summarise a recent study from our laboratory showing that phosphorylation of p53 at Ser392, the sole site modified by CK2 in vitro, is regulated by a novel mechanism where the stoichiometry of phosphorylation is governed by the rate of turnover of the p53 protein. Such a model is entirely consistent with phosphorylation by a constitutively active protein kinase such as CK2. In contrast to this, while there is overwhelming evidence that CK2 phosphorylates p53 in vitro and is the only detectable Ser392 protein kinase in cell extracts, our data raise uncertainty as to whether this interaction truly reflects events underpinning Ser392 phosphorylation in vivo. We consider the possible role of CK2 in regulating the p53 response in a wider context and suggest key issues that should be addressed experimentally to provide a more cohesive picture of the relationship between this important protein kinase and a pivotal anti-cancer surveillance system in cells.  相似文献   

6.
The protein Ser/Thr kinase CK2 (former name: casein kinase II) exists predominantly as a heterotetrameric holoenzyme composed of two catalytic subunits (CK2α) bound to a dimer of noncatalytic subunits (CK2β). We undertook a study to further understand how these subunits interact to form the tetramer. To this end, we used recombinant, C-terminal truncated forms of human CK2 subunits that are able to form the holoenzyme. We analyzed the interaction thermodynamics between the binding of CK2α and CK2β as well as the impact of changes in temperature, pH, and the ionization enthalpy of the buffer using isothermal titration calorimetry (ITC). With structure-guided alanine scanning mutagenesis we truncated individual side chains in the hydrophobic amino acid cluster located within the CK2α interface to identify experimentally the amino acids that dominate affinity. The ITC results indicate that Leu41 or Phe54 single mutations were most disruptive to binding of CK2β. Additionally, these CK2α mutants retained their kinase activity. Furthermore, the substitution of Leu41 in combination with Phe54 showed that the individual mutations were not additive, suggesting that the cooperative action of both residues played a role. Interestingly, the replacement of Ile69, which has a central position in the interaction surface of CK2α, only had modest effects. The differences between Leu41, Phe54, and Ile69 in interaction relevance correlate with solvent accessibility changes during the transition from unbound to CK2β-bound CK2α. Identifying residues on CK2α that play a key role in CK2α/CK2β interactions is important for the future generation of small molecule drug design.  相似文献   

7.
Hypoxia-inducible factors 1α and 2α (HIF-1α and HIF-2α) determine cancer cell fate under hypoxia. Despite the similarities of their structures, HIF-1α and HIF-2α have distinct roles in cancer growth under hypoxia, that is, HIF-1α induces growth arrest whereas HIF-2α promotes cell growth. Recently, sirtuin 1 (Sirt1) was reported to fine-tune cellular responses to hypoxia by deacetylating HIF-1α and HIF-2α. Yet, the roles of Sirt1 in HIF-1α and HIF-2α functions have been controversial. We here investigated the precise roles of Sirt1 in HIF-1α and HIF-2α regulations. Immunological analyses revealed that HIF-1α K674 and HIF-2α K741 are acetylated by PCAF and CBP, respectively, but are deacetylated commonly by Sirt1. In the Gal4 reporter systems, Sirt1 was found to repress HIF-1α activity constantly in ten cancer cell-lines but to regulate HIF-2α activity cell type-dependently. Moreover, Sirt1 determined cell growth under hypoxia depending on HIF-1α and HIF-2α. Under hypoxia, Sirt1 promoted cell proliferation of HepG2, in which Sirt1 differentially regulates HIF-1α and HIF-2α. In contrast, such an effect of Sirt1 was not shown in HCT116, in which Sirt1 inactivates both HIF-1α and HIF-2α because conflicting actions of HIF-1α and HIF-2α on cell growth may be offset. Our results provide a better understanding of the roles of Sirt1 in HIF-mediated hypoxic responses and also a basic concept for developing anticancer strategy targeting Sirt1.  相似文献   

8.
9.
Context: Von Hippel–Lindau disease (VHLD) is a rare inherited neoplastic syndrome. Among all the VHLD-associated tumors, clear cell renal cell carcinoma (ccRCC) is the major cause of death.

Objective: The aim of this paper is the discovery of new non-invasive biomarker for the monitoring of VHLD patients.

Materials and methods: We compared the urinary proteome of VHLD patients, ccRCC patients and healthy volunteers.

Results: Among all differentially expressed proteins, alpha-1-antitrypsin (A1AT) and APOH (beta-2-glycoprotein-1) are strongly over-abundant only in the urine of VHLD patients with a history of ccRCC.

Discussion and conclusion: A1AT and APOH could be promising non-invasive biomarkers.  相似文献   


10.
Heme-regulated eukaryotic initiation factor 2α kinase (HRI) functions under conditions of heme shortage caused by blood diseases such as erythropoietic protoporphyria and β-thalassemia, and retains the heme:globin ratio at 1:1 by sensing the heme concentration in reticulocytes. This HRI function is regulated by various factors including autophosphorylation and protein-protein interactions. A heat-shock protein controls HRI function, however, the molecular mechanism of catalytic regulation of HRI by the heat-shock protein is unclear. In the present study, we examined the interactions of HRI with a heat-shock protein, Hsp90, under various conditions, using a pull-down assay and measuring catalytic activity. It was found that [1] an interaction between Hsp90 and phosphorylated HRI was evident, whereas no interaction was observed between Hsp90 and HRI dephosphorylated by treatment with λ protein phosphatase; [2] Hsp90 enhanced the kinase activity of phosphorylated HRI but not dephosphorylated HRI, but this enhancement was not observed in the presence of heme; and, [3] autophosphorylation of HRI was not influenced by Hsp90. Therefore, we propose that autophosphorylation of HRI is critical for catalytic regulation by Hsp90 under heme-shortage conditions.  相似文献   

11.
12.
The synthesis and structure–activity relationships of novel 4-(4′-fluorophenyl)imidazoles as selective p38α MAPK, CK1δ and JAK2 inhibitors with improved water solubility are described. Microwave-assisted multicomponent reactions afforded 4-fluorophenyl-2,5-disubstituted imidazoles. Carboxylate and phosphonate groups were introduced via ‘click’ reactions. The kinase selectivity was influenced by the heteroaryl group at imidazole C-5 and the position of a carboxylic acid or tetrazole at imidazole C-2. For example, pyrimidines 15 and 34 inhibited p38α MAPK with IC50 = 250 nM and 96 nM, respectively. Pyridine 3 gave CK1δ inhibition with IC50 = 89 nM and pyridin-2-one 31 gave JAK2 inhibition with IC50 = 62 nM.  相似文献   

13.
14.
15.
16.
The eIF2α kinase activity of the heme-regulated inhibitor (HRI) is regulated by heme which makes it a unique member of the family of eIF2α kinases. Since heme concentrations create an equilibrium for the kinase to be active/inactive, it becomes important to study the heme binding effects upon the kinase and understanding its mechanism of functionality. In the present study, we report the thermostability achieved by the catalytic kinase domain of HRI (HRI.CKD) upon ligand (heme) binding. Our CD data demonstrates that the HRI.CKD retains its secondary structure at higher temperatures when it is in ligand bound state. HRI.CKD when incubated with hemin loses its monomeric state and attains a higher order oligomeric form resulting in its stability. The HRI.CKD fails to refold into its native conformation upon mutation of H377A/H381A, thereby confirming the necessity of these His residues for correct folding, stability, and activity of the kinase. Though our in silico study demonstrated these His being the ligand binding sites in the kinase insert region, the spectra-based study did not show significant difference in heme affinity for the wild type and His mutant HRI.CKD.  相似文献   

17.
CK2 is a Ser/Thr protein kinase essential for cell viability. Its activity is anomalously high in several solid (prostate, mammary gland, lung, kidney and head and neck) and haematological tumours (AML, CML and PML), creating conditions favouring the onset of cancer. Cancer cells become addicted to high levels of CK2 activity and therefore this kinase is a remarkable example of "non-oncogene addiction". CK2 is a validated target for cancer therapy with one inhibitor in phase I clinical trials. Several crystal structures of CK2 are available, many in complex with ATP-competitive inhibitors, showing the presence of regions with remarkable flexibility. We present the structural characterisation of these regions by means of seven new crystal structures, in the apo form and in complex with inhibitors. We confirm previous findings about the unique flexibility of the CK2α catalytic subunit in the hinge/αD region, the p-loop and the β4β5 loop, and show here that there is no clear-cut correlation between the conformations of these flexible zones. Our findings challenge some of the current interpretations on the functional role of these regions and dispute the hypothesis that small ligands stabilize an inactive state. The mobility of the hinge/αD region in the human enzyme is unique among protein kinases, and this can be exploited for the development of more selective ATP-competitive inhibitors. The identification of different ligand binding modes to a secondary site can provide hints for the design of non-ATP-competitive inhibitors targeting the interaction between the α catalytic and the β regulatory subunits.  相似文献   

18.
Protein kinase CK2 (formerly “casein kinase 2”) is composed of a central dimer of noncatalytic subunits (CK2β) binding two catalytic subunits. In humans, there are two isoforms of the catalytic subunit (and an additional splicing variant), one of which (CK2α) is well characterized. To supplement the limited biochemical knowledge about the second paralog (CK2α′), we developed a well-soluble catalytically active full-length mutant of human CK2α′, characterized it by Michaelis-Menten kinetics and isothermal titration calorimetry, and determined its crystal structure to a resolution of 2 Å. The affinity of CK2α′ for CK2β is about 12 times lower than that of CK2α and is less driven by enthalpy. This result fits the observation that the β4/β5 loop, a key element of the CK2α/CK2β interface, adopts an open conformation in CK2α′, while in CK2α, it opens only after assembly with CK2β. The open β4/β5 loop in CK2α′ is stabilized by two elements that are absent in CK2α: (1) the extension of the N-terminal β-sheet by an additional β-strand, and (2) the filling of a conserved hydrophobic cavity between the β4/β5 loop and helix αC by a tryptophan residue. Moreover, the interdomain hinge region of CK2α′ adopts a fully functional conformation, while unbound CK2α is often found with a nonproductive hinge conformation that is overcome only by CK2β binding. Taken together, CK2α′ exhibits a significantly lower affinity for CK2β than CK2α; moreover, in functionally critical regions, it is less dependent on CK2β to obtain a fully functional conformation.  相似文献   

19.
Nitric oxide (NO) is a reactive secondary mediator, which has been found to participate in cell cycle regulation and apoptosis in myeloid macrophages, the key effectors of inflammatory and innate immune responses. However, the molecular mechanisms of nitric oxide-induced death of myeloid macrophages are not well understood. In this study we have found that NO derived from S-nitrosoglutathione (GSNO) activates ASK1 in THP-1 human myeloid macrophages in a concentration and time-dependent manner. It also induces accumulation of HIF-1α protein in a concentration-dependent manner, which peaks at 4 h of exposure to 1 mM GSNO. GSNO does not affect the level of HIF-1α mRNA as detected by the RT-PCR. In addition, GSNO was found to induce accumulation of p53 in normal but not HIF-1α knockdown THP-1 cells, where expression of this protein was silenced by specific siRNA. It has also been found that GSNO-mediated accumulation of p53 depends on activation of ASK1 since no GSNO-induced p53 stabilisation was observed in THP-1 cells transfected with dominant-negative form of this kinase. However, in both HIF-1α knockdown THP-1 cells and those transfected with the dominant-negative form of ASK1, GSNO was able to induce cell death as detected by the MTS cell viability assay leading to an increase in release of LDH.  相似文献   

20.
Protein kinase CK2 is a ubiquitous, highly conserved protein kinase with a tetrameric 22 structure. For the formation of this tetrameric complex a - dimer seems to be a prerequisite. Using the two-hybrid system and a series of CK2 deletion mutants, we mapped domains involved in - and - interactions. We also detected an intramolecular b interaction within the amino acid stretch 132-165.Using CK2 as a bait in a two-hybrid library screening several new putative cellular partners have been identified, among them the S6 kinase p90rsk, the putative tumor suppressor protein Doc-1, the Fas-associated protein FAF1, the mitochondrial translational initiation factor 2 and propionyl CoA carboxylase subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号