首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arachidonic acid (AA) is a common dietary n-6 polyunsaturated fatty acid that is present in an esterified form in cell membrane phospholipids, and it might be present in the extracellular microenvironment. In particular, AA promotes MAPK activation and mediates the adhesion of MDA-MB-435 breast cancer cells to type IV collagen. However, the signal transduction pathways mediated by AA have not been studied in detail. Our results demonstrate that stimulation of MDA-MB-231 breast cancer cells with AA promotes an increase in the phoshorylation of Src and FAK, as revealed by site-specific antibodies that recognized the phosphorylation state of Src at Tyr-418, and of FAK at tyrosine-397 and in vitro kinase assays. In addition, AA also induces an increase in the migration of MDA-MB-231 cells. In contrast, AA does not induce phosphorylation of FAK and an increase in cell migration of non-tumorigenic epithelial cells MCF10A. Inhibition of Gi/Go proteins, LOX and Src activity prevent FAK activation and cell migration. In conclusion, our results demonstrate, for the first time, that Gi/Go proteins, LOX and Src play an important role in FAK activation and cell migration induced by AA in MDA-MB-231 breast cancer cells.  相似文献   

2.
Inhibition of focal adhesion kinase (FAK) delays transendothelial migration of breast cancer cells. Here we investigate whether phosphorylation of specific tyrosine residues of FAK (397, 861, and 925) known to control aspects of cell migration on extracellular matrix (ECM), are also involved in transendothelial migration. AU-565 and MDA-MB-231 cells expressing Phe397 FAK show delayed or decreased transendothelial migration, demonstrating the involvement of the FAK autophosphorylation site. Only MDA-MB-231 cells expressing Phe861 FAK exhibit delayed transendothelial migration. Neither MDA-MB-231 nor AU-565 cells expressing Phe925 FAK show a change in transendothelial migration compared to untreated cancer cells. These findings suggest that modified signaling mechanisms regulate cancer cell migration through an endothelial monolayer versus those involved in cell migration on or through ECM.  相似文献   

3.
Arachidonic acid (AA) is a common dietary n−6 cis polyunsaturated fatty acid that under physiological conditions is present in an esterified form in cell membrane phospholipids, however it might be present in the extracellular microenvironment. AA and its metabolites mediate FAK activation, adhesion and migration in MDA-MB-231 breast cancer cells. However, it remains to be investigated whether AA promotes invasion and the signal transduction pathways involved in migration and invasion. Here, we demonstrate that AA induces Akt2 activation and invasion in MDA-MB-231 cells. Akt2 activation requires the activity of Src, EGFR, and PIK3, whereas migration and invasion require Akt, PI3K, EGFR and metalloproteinases activity. Moreover, AA also induces NFκB-DNA binding activity through a PI3K and Akt-dependent pathway. Our findings demonstrate, for the first time, that Akt/PI3K and EGFR pathways mediate migration and invasion induced by AA in MDA-MB-231 breast cancer cells.  相似文献   

4.
Epidemiological studies and animal models suggest an association between high levels of dietary fat intake and an increased risk of breast cancer. In breast cancer cells, the free fatty acid oleic acid (OLA) induces proliferation, migration, invasion and an increase of MMP-9 secretion. However, the role of OLA on Stat5 activation and the participation of COX-2 and LOXs activity in Stat5 activation induced by OLA remain to be investigated. We demonstrate here that stimulation of MDA-MB-231 breast cancer cells with 100 μM OLA induces Stat5 phosphorylation at Tyr-694 and an increase of Stat5–DNA complex formation. The Stat5 DNA-binding activity requires COX-2, LOXs, metalloproteinases and Src activities. In addition, OLA induces cell migration through a Stat5-dependent pathway. In summary, our findings establish that OLA induces cell migration through a Stat5-dependent pathway and that Stat5 activation requires AA metabolites in MDA-MB-231 breast cancer cells.  相似文献   

5.
Sphingosine 1-phosphate (SPP), a bioactive sphingolipid metabolite, inhibits chemoinvasiveness of the aggressive, estrogen-independent MDA-MB-231 human breast cancer cell line. As in many other cell types, SPP stimulated proliferation of MDA-MB-231 cells, albeit to a lesser extent. Treatment of MDA-MB-231 cells with SPP had no significant effect on their adhesiveness to Matrigel, and only high concentrations of SPP partially inhibited matrix metalloproteinase-2 activation induced by Con A. However, SPP at a concentration that strongly inhibited invasiveness also markedly reduced chemotactic motility. To investigate the molecular mechanisms by which SPP interferes with cell motility, we examined tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin, which are important for organization of focal adhesions and cell motility. SPP rapidly increased tyrosine phosphorylation of FAK and paxillin and of the paxillin-associated protein Crk. Overexpression of FAK and kinase-defective FAK in MDA-MB-231 cells resulted in a slight increase in motility without affecting the inhibitory effect of SPP, whereas expression of FAK with a mutation of the major autophosphorylation site (F397) abolished the inhibitory effect of SPP on cell motility. In contrast, the phosphoinositide 3'-kinase inhibitor, wortmannin, inhibited chemotactic motility in both vector and FAK-F397-transfected cells. Our results suggest that autophosphorylation of FAK on Y397 may play an important role in SPP signaling leading to decreased cell motility.  相似文献   

6.
Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase involved in integrin-mediated control of cell behavior. Following cell adhesion to components of the extracellular matrix, FAK becomes phosphorylated at multiple sites, including tyrosines 397, 576, and 577. Tyr-397 is an autophosphorylation site that promotes interaction with c-Src or Fyn. Tyr-576 and Tyr-577 lie in the putative activation loop of the kinase domain, and FAK catalytic activity may be elevated through phosphorylation of these residues by associated Src family kinase. Recent studies have implicated FAK as a positive regulator of cell spreading and migration. To further study the mechanism of adhesion-induced FAK activation and the possible role and signaling requirements for FAK in cell spreading and migration, we utilized the tetracycline repression system to achieve inducible expression of either wild-type FAK or phosphorylation site mutants in fibroblasts derived from FAK-null mouse embryos. Using these Tet-FAK cells, we demonstrated that both the FAK autophosphorylation and activation loop sites are critical for maximum adhesion-induced FAK activation and FAK-enhanced cell spreading and migration responses. Negative effects on cell spreading and migration, as well as decreased phosphorylation of the substrate p130(Cas), were observed upon induced expression of the FAK autophosphorylation site mutant. These negative effects appear to result from an inhibition of integrin-mediated signaling by the FAK-related kinase Pyk2/CAKbeta/RAFTK/CadTK.  相似文献   

7.
The focal adhesion kinase (FAK) is a key regulator of cell migration. Phosphorylation at Tyr-397 activates FAK and creates a binding site for Src family kinases. FAK phosphorylates the cytoskeletal protein alpha-actinin at Tyr-12. Here we report that protein-tyrosine phosphatase 1B (PTP 1B) is an alpha-actinin phosphatase. PTP 1B-dependent dephosphorylation of alpha-actinin was seen in COS-7 cells and PTP 1B-null fibroblasts reconstituted with PTP 1B. Furthermore, we show that coexpression of wild-type alpha-actinin and PTP 1B causes dephosphorylation at Tyr-397 in FAK. No dephosphorylation was observed in cells coexpressing the alpha-actinin phosphorylation mutant Y12F and PTP 1B. Furthermore, the phosphorylation at four other sites in FAK was not altered by PTP 1B. In addition, we found that phosphorylated alpha-actinin bound to Src and reduced the binding of FAK to Src. The dephosphorylation at Tyr-397 in FAK triggered by wild-type alpha-actinin and PTP 1B caused a significant increase in cell migration. We propose that phosphorylated alpha-actinin disrupts the FAK x Src complex exposing Tyr-397 in FAK to PTP 1B. These findings uncover a novel feedback loop involving phosphorylated alpha-actinin and PTP 1B that regulates FAK x Src interaction and cell migration.  相似文献   

8.
Multiple stimuli promote the tyrosine phosphorylation and activation of focal adhesion kinase (FAK), which ultimately facilitates migration. Little is known about the effect of adhesion-dependent signals and cytoskeleton organization on the regulation of FAK phosphorylation at serine sites, or about the role of FAK serine phosphorylation in cell migration. Here, we show that FAK phosphorylation at Ser-843 is strikingly increased when adherent cells are removed from the substratum and held in suspension or by treatment of adherent cells with cytochalasin D, conditions that disrupt the F-actin cytoskeleton and promote focal adhesion disassembly. Notably, the increase in Ser-843 phosphorylation was accompanied by a concomitant sharp decrease in Tyr-397 phosphorylation. To further examine the cause-effect relationship between these two phosphorylation sites we generated Ser-843 phosphorylation-deficient and phosphorylation-mimicking FAK mutants. We found that mutation of Ser-843 to aspartic acid (FAK[S843D]) markedly decreased FAK Tyr-397 phosphorylation in integrin-stimulated cells. While the migratory defect of FAK-deficient fibroblasts was rescued by stable re-expression of WT FAK or FAK[S843A], stable re-expression of FAK[S843D] failed to restore the ability of the cells to migrate into the denuded area of a wound. Our results indicate that increased FAK phosphorylation at Ser-843 represses FAK phosphorylation at Tyr-397, thus suggesting a mechanism of cross-talk between these phosphorylation sites that could regulate FAK-mediated cell shape and migration.  相似文献   

9.
Heregulin (HRG) has been implicated in the progression of breast cancer cells to a malignant phenotype, a process that involves changes in cell motility and adhesion. Here we demonstrate that HRG differentially regulates the site-specific phosphorylation of the focal adhesion components focal adhesion kinase (FAK) and paxilin in a dose-dependent manner. HRG at suboptimal doses (0.01 and 0.1 nM) increased adhesion of cells to the substratum, induced phosphorylation of FAK at Tyr-577, -925, and induced formation of well-defined focal points in breast cancer cell line MCF-7. HRG at a dose of 1 nM, increased migratory potential of breast cancer cells, selectively dephosphorylated FAK at Tyr-577, -925, and paxillin at Tyr-31. Tyrosine phosphorylation of FAK at Tyr-397 remained unaffected by HRG stimulation. FAK associated with HER2 only in response to 0.01 nM HRG. In contrast, 1 nM HRG induced activation and increased association of tyrosine phosphatase SHP-2 with HER2 but decreased association of HER2 with FAK. Expression of dominant-negative SHP-2 blocked HRG-mediated dephosphorylation of FAK and paxillin, leading to persistent accumulation of mature focal points. Our results suggest that HRG differentially regulates signaling from focal adhesion complexes through selective phosphorylation and dephosphorylation and that tyrosine phosphatase SHP-2 has a role in the HRG signaling.  相似文献   

10.
Focal adhesion kinase (FAK) is a key signaling molecule regulating cellular responses to integrin-mediated adhesion. Integrin engagement promotes FAK phosphorylation at multiple sites to achieve full FAK activation. Phosphorylation of FAK Tyr-397 creates a binding site for Src-family kinases, and phosphorylation of FAK Tyr-576/Tyr-577 in the kinase domain activation loop enhances catalytic activity. Using novel phosphospecific antibody reagents, we show that FAK activation loop phosphorylation is significantly elevated in cells expressing activated Src and is an early event following cell adhesion to fibronectin. In both cases, this regulation is largely dependent on Tyr-397. We also show that the FAK activation loop tyrosines are required for maximal Tyr-397 phosphorylation. Finally, immunostaining analyses revealed that tyrosine-phosphorylated forms of FAK are present in both newly forming and mature focal adhesions. Our findings support a model for reciprocal activation of FAK and Src-family kinases and suggest that FAK/Src signaling may occur during both focal adhesion assembly and turnover.  相似文献   

11.
Focal Adhesion Kinase (FAK) is essential for cell migration and plays an important role in tumor metastasis. However, the complex intermolecular and intramolecular interactions that regulate FAK activity at the focal adhesion remain unresolved. We have engineered a toolbox of FRET sensors that retain all of the individual FAK domains but modulate a key intramolecular regulatory interaction between the band 4.1/ezrin/radixin/moesin (FERM) and kinase domains of FAK. We demonstrate systematic control and quantitative measurement of the FERM-kinase interaction at focal adhesions, which in turn allows us to control cell migration. Using these sensors, we find that Tyr-397 phosphorylation, rather than kinase activity of FAK, is the key determinant of cell migration. Our sensors directly demonstrate, for the first time, a pH-dependent change in a protein-protein interaction at a macromolecular structure in live cells. The FERM-kinase interaction at focal adhesions is enhanced at acidic pH, with a concomitant decrease in Tyr-397 phosphorylation, providing a potential mechanism for enhanced migration of cancer cells.  相似文献   

12.
In order to exert metabolic effects, fatty acids must be taken up by cells and metabolize effectively to different classes of cellular lipids (triacylglycerols, phospholipids, etc.) for incorporation into different cellular and intracellular compartments. Therefore, the main aim of the present study is to investigate the uptake and metabolism of fatty acids representing three different series of fatty acids such as oleic acid, 18:1n-9 (OA), arachidonic acid, 20:4n-6 (AA), and eicosapentaneoic acid, 20:5n-3 (EPA) by breast cancer cells, MDA-MB-231. Moreover, we investigated the effects of insulin and several adipokines on the fatty acid uptake by these cells as obesity and insulin resistance syndrome have been suggested to affect breast cancer risk. We report for the first time that AA was predominantly taken up by these cells compared with EPA and OA. Pre-incubation of these cells with TNFα stimulated most of the uptake of EPA (30%), whereas uptake of OA and AA was stimulated only 10–15% compared with the controls. Insulin, leptin, and adiponectin had no effect on fatty acid uptake by these cells. Together these results demonstrate that preferential uptake of AA in MDA-MB-231 cells, and the fatty acid uptake activity of these cells is influenced by TNFα.  相似文献   

13.
Plating suspended Swiss 3T3 cells onto fibronectin-coated dishes promoted phosphorylation of endogenous focal adhesion kinase (FAK) at Tyr-397, the major autophosphorylation site, and at Tyr-577, located in the activation loop, as revealed by site-specific antibodies that recognize the phosphorylated form of these residues. Treatment with the selective Src family kinase inhibitor pyrazolopyrimidine 2 (PP-2) markedly reduced the phosphorylation of both Tyr-397 and Tyr-577 induced by fibronectin. Furthermore, fibronectin-mediated FAK phosphorylation at Tyr-397 was dramatically reduced in SYF cells (deficient in Src, Yes, and Fyn expression). Stimulation of Swiss 3T3 cells with bombesin also induced a rapid increase in the phosphorylation of endogenous FAK at Tyr-397. In contrast to the results obtained with fibronectin, PP-2 did not prevent FAK Tyr-397 phosphorylation stimulated by bombesin at a concentration (10 micrometer) that suppressed bombesin-induced FAK Tyr-577 phosphorylation. Similarly, PP-2 did not prevent Tyr-397 phosphorylation in Swiss 3T3 cells stimulated with other G protein-coupled receptor agonists including vasopressin, bradykinin, endothelin, and lysophosphatidic acid. Lysophosphatidic acid also induced FAK phosphorylation at Tyr-397 in SYF cells. Our results identify, for first time, the existence of Src-dependent and Src-independent pathways leading to FAK autophosphorylation at Tyr-397 stimulated by adhesion-dependent signals and G protein-coupled receptor agonists in the same cell.  相似文献   

14.
Arachidonic acid (AA) is a common dietary n‐6 cis polyunsaturated fatty acid that under physiological conditions is present in an esterified form in cell membrane phospholipids, and it might be present in the extracellular microenvironment. AA and its metabolites are implicated in FAK activation and cell migration in MDA‐MB‐231 breast cancer cells, and an epithelial‐to‐mesenchymal‐like transition process in mammary non‐tumorigenic epithelial cells MCF10A. During malignant transformation is present an altered expression of glycosiltransferases, which promote changes on the glycosilation of cell‐surface proteins. The β‐1,4‐galactosyltransferase I (GalT I) is an enzyme that participates in a variety of biological functions including cell growth, migration, and spreading. However, the participation of AA in the regulation of GalT I expression and the role of this enzyme in the cell adhesion process in breast cancer cells remains to be investigated. In the present study, we demonstrate that AA induces an increase of GalT I expression through a PLA2α, Src, ERK1/2, and LOXs activities‐dependent pathway in MDA‐MB‐231 breast cancer cells. Moreover, MDA‐MB‐231 cells adhere to laminin via GalT I expression and pretreatment of cells with AA induces an increase of cell adhesion to laminin. In conclusion, our findings demonstrate, for the first time, that AA promotes an increase of GalT I expression through an AA metabolism, Src and ERK1/2 activities‐dependent pathway, and that GalT I plays a pivotal role in cell adhesion to laminin in MDA‐MB‐231 breast cancer cells. J. Cell. Biochem. 113: 3330–3341, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase that promotes cell migration, survival, and gene expression. Here we show that FAK signaling is important for tumor necrosis factor-alpha (TNFalpha)-induced interleukin 6 (IL-6) mRNA and protein expression in breast (4T1), lung (A549), prostate (PC-3), and neural (NB-8) tumor cells by FAK short hairpin RNA knockdown and by comparisons of FAK-null (FAK(-/-)) and FAK(+/+) mouse embryo fibroblasts. FAK promoted TNFalpha-stimulated MAPK activation needed for maximal IL-6 production. FAK was not required for TNFalpha-mediated nuclear factor-kappaB or c-Jun N-terminal kinase activation. TNFalpha-stimulated FAK catalytic activation and IL-6 production were inhibited by FAK N-terminal but not FAK C-terminal domain overexpression. Analysis of FAK(-/-) fibroblasts stably reconstituted with wild type or various FAK point mutants showed that FAK catalytic activity, Tyr-397 phosphorylation, and the Pro-712/713 proline-rich region of FAK were required for TNFalpha-stimulated MAPK activation and IL-6 production. Constitutively activated MAPK kinase-1 (MEK1) expression in FAK(-/-) and A549 FAK short hairpin RNA-expressing cells rescued TNFalpha-stimulated IL-6 production. Inhibition of Src protein-tyrosine kinase activity or mutation of Src phosphorylation sites on FAK (Tyr-861 or Tyr-925) did not affect TNFalpha-stimulated IL-6 expression. Moreover, analyses of Src(-/-), Yes(-/-), and Fyn(-/-) fibroblasts showed that Src expression was inhibitory to TNFalpha-stimulated IL-6 production. These studies provide evidence for a novel Src-independent FAK to MAPK signaling pathway regulating IL-6 expression with potential importance to inflammation and tumor progression.  相似文献   

16.
The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB1 receptors could induce a non-invasive phenotype in breast metastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB1 antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB1 receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB1 receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo.  相似文献   

17.
Differential regulation of cell motility and invasion by FAK   总被引:41,自引:0,他引:41  
Cell migration and invasion are fundamental components of tumor cell metastasis. Increased focal adhesion kinase (FAK) expression and tyrosine phosphorylation are connected with elevated tumorigenesis. Null mutation of FAK results in embryonic lethality, and FAK-/- fibroblasts exhibit cell migration defects in culture. Here we show that viral Src (v-Src) transformation of FAK-/- cells promotes integrin-stimulated motility equal to stable FAK reexpression. However, FAK-/- v-Src cells were not invasive, and FAK reexpression, Tyr-397 phosphorylation, and FAK kinase activity were required for the generation of an invasive cell phenotype. Cell invasion was linked to transient FAK accumulation at lamellipodia, formation of a FAK-Src-p130Cas-Dock180 signaling complex, elevated Rac and c-Jun NH2-terminal kinase activation, and increased matrix metalloproteinase expression and activity. Our studies support a dual role for FAK in promoting cell motility and invasion through the activation of distinct signaling pathways.  相似文献   

18.
We investigated the molecular and cellular actions of receptor protein tyrosine phosphatase (PTP) alpha in integrin signaling using immortalized fibroblasts derived from wild-type and PTP alpha-deficient mouse embryos. Defects in PTP alpha-/- migration in a wound healing assay were associated with altered cell shape and focal adhesion kinase (FAK) phosphorylation. The reduced haptotaxis to fibronectin (FN) of PTP alpha-/- cells was increased by expression of active (but not inactive) PTP alpha. Integrin-mediated formation of src-FAK and fyn-FAK complexes was reduced or abolished in PTP alpha-/- cells on FN, concomitant with markedly reduced phosphorylation of FAK at Tyr397. Reintroduction of active (but not inactive) PTP alpha restored FAK Tyr-397 phosphorylation. FN-induced cytoskeletal rearrangement was retarded in PTP alpha-/- cells, with delayed filamentous actin stress fiber assembly and focal adhesion formation. This mimicked the effects of treating wild-type fibroblasts with the src family protein tyrosine kinase (Src-PTK) inhibitor PP2. These results, together with the reduced src/fyn tyrosine kinase activity in PTP alpha-/- fibroblasts (Ponniah et al., 1999; Su et al., 1999), suggest that PTP alpha functions in integrin signaling and cell migration as an Src-PTK activator. Our paper establishes that PTP alpha is required for early integrin-proximal events, acting upstream of FAK to affect the timely and efficient phosphorylation of FAK Tyr-397.  相似文献   

19.
This study examined whether focal adhesion kinase (FAK) plays a role in the differentiation of C(2)C(12) myoblasts into myotubes. Differentiation of C(2)C(12) myoblasts induced by switch to differentiation culture medium was accompanied by a transient reduction of FAK phosphorylation at Tyr-397 (to approximately 50%, at 1 and 2 h), followed by an increase thereafter (to 240% up to 5 days), although FAK protein expression remained unchanged. FAK and phosphorylated FAK were found at the edge of lamellipodia in proliferating cells, whereas the later increase in FAK phosphorylation in differentiating cells was accompanied by its preferential location at the tip of well-organized actin stress fibers. Hyperexpression of FAK autophosphorylation site (Tyr-397) mutant (MT-FAK) reduced FAK phosphorylation at Tyr-397 in proliferating cells and was accompanied by reduction of cyclin D1 and increase of myogenin expression. These cells failed to progress to myotubes in differentiation medium. In contrast, hyperexpression of a wild-type FAK construction (WT-FAK) increased baseline and abolished the transient reduction of FAK phosphorylation at Tyr-397 in serum-starved C(2)C(12) cells. Cells transfected with WT-FAK failed to reduce cyclin D1 and to increase myogenin expression, as well as to progress to terminal differentiation in differentiation medium. These data indicate that FAK signaling plays a critical role in the control of cell cycle as well as in the progression of C(2)C(12) cells to terminal differentiation. Transient inhibition of FAK phosphorylation at Tyr-397 contributes to trigger the myogenic genetic program, but its later activation is also central to terminal differentiation into myotubes.  相似文献   

20.
The small GTPase Cdc42 has been implicated as an important regulator of cell migration. However, whether Cdc42 plays similar role in all cancer cells irrespective of metastatic potential remains poorly defined. Here, we show by using three different breast cancer cell lines with different metastatic potential, the role of Cdc42 in cell migration/invasion and its relationship with a number of downstream signaling pathways controlling cell migration. Small interfering RNA (siRNA)-mediated knockdown of Cdc42 in two highly metastatic breast cancer cell lines (MDA-MB-231 and C3L5) resulted in enhancement, whereas the same in moderately metastatic (Hs578T) cell line resulted in inhibition of intrinsic cellular migration/invasion. Furthermore, Cdc42 silencing in MDA-MB-231 and C3L5 but not Hs578T cells was shown to be accompanied by increased RhoA activity and phosphorylation of protein kinase C (PKC)-δ, extracellular signal regulated kinase1/2 (Erk1/2), and protein kinase A (PKA). Pharmacological inhibition of PKCδ, MEK-Erk1/2, or PKA was shown to inhibit migration of both control and Cdc42-silenced MDA-MB-231 cells. Furthermore, introduction of constitutively active Cdc42 was shown to decrease migration/invasion of MDA-MB-231 and C3L5 but increase migration/invasion of Hs578T cells. This decreased migration/invasion of MDA-MB-231 and C3L5 cells was also shown to be accompanied by the decrease in the phosphorylations of PKCδ, Erk1/2, and PKA. These results suggested that endogenous Cdc42 could exert a negative regulatory influence on intrinsic migration/invasion and some potentially relevant changes in phosphorylation of PKCδ, Erk1/2, and PKA of some aggressive breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号