首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new complex of the oxovanadium(IV) cation with the flavolignan silibinin has been synthesized and characterized. Vanadium compounds show interesting biological and pharmacological properties and some of them display antitumoral actions. Flavonoids are part of a larger group of antioxidant compounds called polyphenols which may inhibit the proliferation and growth of cancer cells. The antioxidant and antitumoral effects of silibinin and its oxovanadium(IV) complex were investigated. Silibinin acted as a very strong antioxidant and its complexation with oxovanadium(IV) improved this behavior. Besides, the generation of reactive oxygen species (ROS) by this compound was favored in tumoral (UMR106) cells and correlated with the deleterious behavior in the proliferation of this cell line. Conversely, silibinin did not exert any effect on the proliferation of normal osteoblasts (MC3T3E1). The cytotoxic action and ROS generation of the oxovanadium(IV) complex was more effective in tumoral cells. This behavior was not consistent with cleaving DNA of plasmid DNA pA1 because no significant cleaving activity was observed in both cases. These results suggest that the main deleterious mechanisms may take place through cytotoxic effects more than genotoxic actions. A comparison with our own findings on the behavior of other flavonoids and their vanadyl(IV) complex has also been performed.  相似文献   

2.
3.
Polyethylene glycol of about 5000 D was activated with cyanuric chloride, and the activated compound was complexed to each of three proteins. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase were each radioprotectants when administered prophylactically to female B6CBF1 mice before irradiation. The dose reduction factor for these mice was 1.2 when 5000 units of polyethylene glycol-catalase was administered before 60Co irradiation. Female B6CBF1 mice administered prophylactic intravenous injections of catalase, polyethylene glycol-albumin, or heat-denatured polyethylene glycol-catalase had survival rates similar to phosphate-buffered saline-injected control mice following 60Co irradiation. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase have radioprotective activity in B6CBF1 mice, which appears to depend in part on enzymatic activities of the complex. However, no radioprotective effect was observed in male C57BL/6 mice injected with each polyethylene glycol-protein complex at either 3 or 24 hr before irradiation. The mechanism for radioprotection by these complexes may depend in part on other factors.  相似文献   

4.
We recently reported that indomethacin, an inhibitor of prostaglandin (PG) synthesis, increased the radioresponse of PG-producing murine tumors, but it protected the hematopoietic system from radiation damage [Furuta et al., Cancer Res. 48, 3008-3013 (1988)]. Here we have investigated possible mechanisms responsible for the radioprotective effect of indomethacin. In the exogenous spleen colony assay, bone marrow cells from indomethacin-treated mice showed a similar radioresponse to those from mice not treated with indomethacin, thus excluding true radioprotection as a mechanism. Also, neither the total number of bone marrow cells nor the number of stem cells in bone marrow were affected by the treatment with indomethacin. However, indomethacin induced significant splenomegaly, which was associated with an increased number of both nucleated cells and hematopoietic stem cells in the spleen. The latter was determined by the exogenous spleen colony assay. Thus indomethacin protected hematopoietic tissue indirectly through stimulation of hematopoietic cells in the spleen. When indomethacin was combined with WR-2721, which is a true radioprotector, we obtained a greater radioprotective effect than with either used alone according to the endogenous spleen colony assay.  相似文献   

5.
Gliotoxin causes oxidative damage to plasmid and cellular DNA   总被引:5,自引:0,他引:5  
The cytotoxic effects of gliotoxin (Müllbacher, A., and Eichner, R. D. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 3835-3837), a fungal secondary metabolite, and related epipolythiodioxopiperazines have been investigated using plasmid and eukaryotic DNA. Incubation of the dithiol derivative of these compounds with DNA and Fe3+ is sufficient to cause single- and double-stranded breaks as determined by neutral agarose gel electrophoresis. The disulfide form is inactive except in the presence of a suitable reducing agent, such as reduced glutathione, dithiothreitol, or reduced pyridine coenzymes. The autooxidation of these dithiols produces reducing equivalents as evidenced by (i) the production of H2O2 and (ii) the generation of thiobarbituric acid reactive products when incubated with deoxyribose. The latter process is inhibited by ethanol and desferrioxamine. The DNA damage is abrogated by metal chelators and catalase. We conclude that the antiproliferative action of gliotoxin may be caused by DNA damage effected by reactive oxygen species or other radicals generated through redox cycling.  相似文献   

6.
We established a rapid procedure for obtaining transgenic mice by directly injecting an enhanced green fluorescent protein (EGFP)-expressing plasmid (pIRES-EGFP) into the ovaries of fertile mice. The frequency of transgenic mouse production was determined by pair-mating, and by polymerase chain reaction (PCR) and sequence analysis of DNA taken from the tails of the offspring. The mice that received the EGFP gene transmitted it to their offspring (F(1)). Genetic and PCR analyses of F(1) progeny confirmed that the inserted EGFP was stably inherited. Of six female F(1) mice, all were able to pass the foreign DNA on to the next generation (F(2)). In situ hybridization using paraffin-embedded sections of ovarian and testicular tissues from the F(1) and F(2) progeny showed that the introduced gene was expressed in the gonads of the animals. The chromosomal location of the injected DNA was determined by fluorescence in situ hybridization, and the frequency of multiple site versus single site insertions is 85.71% (18/21) analyzed by FISH. We anticipate great progress in murine genetic engineering using this technique.  相似文献   

7.
8.
Biological effects of microwaves (2450 MHz) were studied on cellular immune response of Swiss mouse. The obtained results show an increase of MIF, PFC and Phagocytosis values after microwaves irradiation.  相似文献   

9.
10.
11.
12.
We prepared stable homogeneous suspensions with layered double hydroxide (LDH) nanoparticles for in vitro gene delivery tests. The viability of HEK 293T cells in the presence of LDH nanoparticles at different concentrations was investigated. This revealed 50% cell viability at 500 microg/mL of LDH nanoparticles that is much higher than 50-100 microg/mL used for the delivery tests. The supercoiled pEF-eGFP plasmid (ca. 6100 base pairs) was mixed with LDH nanoparticle suspensions for anion exchange at a weight ratio of DNA/LDH between 1:25 and 1:100. In vitro experiments show that GFP expression in HEK 293T cells starts in the first day, reaches the maximum levels by the second day and continues in the third day. The GFP expression generally increases with the increase in DNA loading in DNA-LDH nanohybrids. However, the delivery efficiency with LDH nanoparticles as the agent is low. For example, the relative efficiency is 7%-15% of that of the commercial agent FuGENE 6. Three to 6% of total cells expressed GFP in an amount detectable by the FACS cytometry 2 days after transfection at 1 microg/mL of plasmid DNA with 25 microg/mL of LDH nanomaterial. The lower delivery efficiency could be attributed to the aggregation of LDH nanoparticles caused by the long-chain plasmid DNA.  相似文献   

13.
The skin cells of newborn mice were stably transformed in vivo with the aid of electroporation. The plasmid DNA was introduced subcutaneously followed by high-voltage pulses applied to the skin pleat. NEO-resistant colonies were found in primary cell cultures obtained from the treated skin. The experiments show that in vivo electroporation can be used for the introduction of plasmid DNA into skin cells of mouse.  相似文献   

14.
Recombinant human interleukin-1 alpha (rHIL-1 alpha or IL-1) protected the intestinal crypt cells of mice against X-ray-induced damage. The survival of crypt cells measured in terms of their ability to form colonies of regenerating duodenal epithelium in situ was increased when IL-1 was given either before or after irradiation. The maximum degree of radioprotection was seen when the drug was given between 13 and 25 h before irradiation. The IL-1 dose producing maximum protection was about 6.3 micrograms/kg. This is the first report indicating that the cytokine IL-1 has a radioprotective effect in the intestine. The finding suggests that IL-1 may be of potential value in preventing radiation injury to the gut in the clinic.  相似文献   

15.
Summary Polyethylene glycol (PEG) efficiently mediated the transformation ofStreptomyces avermitilis protoplasts by plasmid DNA to yield 107 transformants per g of plasmid DNA. Under conditios in which the maximum transformation frequency was observed, the cotransformation frequency exceeded 10%. The number of transformants increased linearly with the amount of DNA and number ofS. avermitilis protoplasts. Relaxed and supercoiled, but not linear DNA transformed protoplasts efficiently. Dimethyl sulfoxide (DMSO)-mediated transformation of protoplasts was 1000-fold less efficient. PEG and, less efficiently, DMSO also mediated the transformation of whole cells ofS. avermitilis by DNA.  相似文献   

16.
Summary The plasmid ColIb-P9 introduced into Escherichia coli K12 umuC mutant cells suppresses the deficiencies in mutagenesis and repair of mutants after UV-irradiation. These data suggest that ColIb-P9 encodes a product with a function similar to that of the chromosomal gene umuC. Tn5 insertion mutants of ColIb-P9 were isolated with an altered ability to restore UV-mutagenesis in the umuC mutant. The same plasmid mutations were shown to eliminate the effects of ColIb-P9 on UV-mutagenesis, survival after UV and mitomycin C treatment, reactivation of UV-irradiated in unirradiated cells, Weigle-reactivation, induction of colicin E1 synthesis. The ColIb-P9 genes responsible for the enhancement of UV-mutagenesis were cloned within a 14 Md SalI fragment. Their location was established by restriction analysis of the mutant plasmid ColIb 6-13::Tn5.While the action of the plasmids ColIb-P9 and pKM101 is similar, these plasmids were shown to have opposite effects on cell survival and colicin E1 synthesis after mitomycin C treatment. A study of the mutant plasmids ColIb::Tn5 and pGW12 (muc - mutant of pKM101) has shown the difference in the effects of ColIb-P9 and pKM101 to be associated with the plasmid genes responsible for the protective and mutagenesis-enhancing effects of these plasmids in UV-irradiated cells.Abbreviations MC mitomycin C - ICS induction of colicin synthesis  相似文献   

17.
Chromatographic methods have been used to purify the DNA of plasmid RP1. DNA was purified in two stages. DNA was precipitated by ethanol and separated from RNA and proteins in Sepharose 4B column after lysis of plasmid containing cells by alkaline solution of sodium dodecylsulphate. Separation of the total DNA preparation and isolation of plasmid DNA was achieved at the second stage by chromatography on the hydroxyapatite column. The resulting purified plasmid DNA was free of RNA, protein and linear fragments of chromosomal DNA. The plasmid DNA kept intact native structure and possessed the transforming activity. The DNA of RP1 yield after purification by the described technique presented 70-80 micrograms per g of wet biomass.  相似文献   

18.
A system for obtaining regenerating protoplasts of highly active Bacillus licheniformis 1001 strain was developed. Transformation of protoplasts by pUB110 and pminiKC plasmids (constructed from plasmids pUB110 and pC194) leading to the expression of kanamycine resistance, was demonstrated. It is supposed that in Bac licheniformis, the pminiKC plasmid is integrated into cellular chromosome, in contrast to pUB110 and parental Bac subtilis (pminiKC) strain. Still, the integrated plasmid seems to be not completely under control of the host chromosome. As a result of such integration, the plasmid conversion takes place, resulting in alteration of cytokinesis (filament formation) and sporulation, but not interfering with the ability to produce antibiotic bacitracin.  相似文献   

19.
For the first time the possibility of the genetic transformation of L. pneumophila and L. bozemanii strains with the use of purified DNA of plasmids pUC19, pUC4K, pSC101 and RSF1010-pBR322 was shown. The frequency of transformation varied from 5.2 x 10(-6) to 5.8 x 10(-7), depending on the strain used in the experiment and plasmid DNA. In some of the transformants obtained in this investigation plasmid DNA whose molecular weight was similar to that of the plasmid DNA used for transformation was detected. The relatively stable preservation of plasmids pSC101 and RSF1010 in Legionella strains and the loss of plasmids pUC19, pUC4K and pBR322 in 80% of transformants during storage were shown.  相似文献   

20.
Type 1 diabetes results in most cases from the destruction of insulin-secreting beta cells by the immune system. Several immunization methods based on administration of autoantigenic polypeptides such as insulin and glutamic acid decarboxylase (GAD) have been used to prevent autoimmune diabetes in the non-obese diabetic (NOD) mouse. In the work presented here, a gene-based approach was taken for a similar purpose. A plasmid carrying different cDNAs was used to investigate the effects of injecting naked DNA on cyclophosphamide-accelerated diabetes in female NOD mice. Four-week-old animals received intramuscular injections of plasmid DNA encoding either intracellular GAD, a secreted form of GAD, or a secreted form of a soft coral luciferase. Monitoring of glycosuria and hyperglycemia indicated that injection of plasmid DNA encoding secreted GAD and secreted luciferase could prevent and delay diabetes, respectively. In contrast, injection of DNA encoding intracellular GAD did not suppress the disease significantly. Analysis of anti-GAD IgG(1) antibody titers in animal sera indicated that diabetes prevention after injection of GAD-encoding DNA was possibly associated with increased Th2-type activity. These results suggest that cellular localization of GAD is a factor to consider in the design of GAD-based genetic vaccines for the prevention of autoimmune diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号