共查询到20条相似文献,搜索用时 15 毫秒
1.
Florenci Serras 《Fly》2016,10(3):128-133
Recent work has strengthened Drosophila imaginal discs as a model system for regeneration studies. Evidence is accumulating that oxidative stress drives the cellular responses for repair and regeneration. Drosophila imaginal discs generate a burst of reactive oxygen species (ROS) upon damage that is necessary for the activation of the Jun N-terminal kinase (JNK) and p38 MAP kinase signaling pathways. Moreover, these pathways are pivotal in the activation of regenerative growth. A hypothetical mechanism of how the ROS are initiated, and how repair and regeneration is activated is discussed here. 相似文献
2.
Birth oxidative stress and the development of an antioxidant system in newborn piglets 总被引:1,自引:0,他引:1
《Free radical research》2013,47(12):1027-1035
3.
Oxygen free radicals have been implicated in the pathogenesis of hypoxic-ischemic encephalopathy. It has previously been shown in traumatic brain injury animal models that treatment with cyclosporine reduces brain injury. However, the potential neuroprotective effect of cyclosporine in asphyxiated neonates has yet to be fully studied. Using an acute newborn swine model of hypoxia-reoxygenation, we evaluated the effects of cyclosporine on the brain, focusing on hydrogen peroxide (H2O2) production and markers of oxidative stress. Piglets (1–4 d, 1.4–2.5 kg) were block-randomized into three hypoxia-reoxygenation experimental groups (2 h hypoxia followed by 4 h reoxygenation)(n = 8/group). At 5 min after reoxygenation, piglets were given either i.v. saline (placebo, controls) or cyclosporine (2.5 or 10 mg/kg i.v. bolus) in a blinded-randomized fashion. An additional sham-operated group (n = 4) underwent no hypoxia-reoxygenation. Systemic hemodynamics, carotid arterial blood flow (transit-time ultrasonic probe), cerebral cortical H2O2 production (electrochemical sensor), cerebral tissue glutathione (ELISA) and cytosolic cytochrome-c (western blot) levels were examined. Hypoxic piglets had cardiogenic shock (cardiac output 40–48% of baseline), hypotension (mean arterial pressure 27–31 mmHg) and acidosis (pH 7.04) at the end of 2 h of hypoxia. Post-resuscitation cyclosporine treatment, particularly the higher dose (10 mg/kg), significantly attenuated the increase in cortical H2O2 concentration during reoxygenation, and was associated with lower cerebral oxidized glutathione levels. Furthermore, cyclosporine treatment significantly attenuated the increase in cortical cytochrome-c and lactate levels. Carotid blood arterial flow was similar among groups during reoxygenation. Conclusively, post-resuscitation administration of cyclosporine significantly attenuates H2O2 production and minimizes oxidative stress in newborn piglets following hypoxia-reoxygenation. 相似文献
4.
5.
DNA polymerase kappa (pol kappa) is a member of the Y-family of DNA polymerases that are thought to function in translesion synthesis (TLS) past different types of DNA damage. Here, we show that pol kappa-deficient mouse cells have substantially reduced (but not absent) levels of nucleotide excision repair (NER) of UV damage, as measured by several methods. Our results provide evidence for an unexpected role for pol kappa in mammalian NER. 相似文献
6.
Aging is associated with a reduction in the DNA repair capacity under oxidative stress. However, whether the DNA damage and
repair capacity can be a biomarker of aging remains controversial. In this study, we demonstrated two cause-and-effect relationships,
the one is between the DNA damage and repair capacity and the cellular age, another is between DNA damage and repair capacity
and the level of oxidative stress in human embryonic lung fibroblasts (2BS) exposed to different doses of hydrogen peroxide
(H2O2). To clarify the mechanisms of the age-related reduction in DNA damage and repair capacity, we preliminarily evaluated the
expressions of six kinds of pivotal enzymes involved in the two classical DNA repair pathways. The DNA repair capacity was
observed in human fibroblasts cells using the comet assay; the age-related DNA repair enzymes were selected by RT-PCR and
then verified by Western blot in vitro. Results showed that the DNA repair capacity was negatively and linearly correlated
with (i) cumulative population doubling (PD) levels only in the group of low concentration of hydrogen peroxide treatment,
(ii) with the level of oxidative stress only in the group of young PD cells. The mRNA expression of DNA polymerase δ1 decreased
substantially in senescent cells and showed negative linear-correlation with PD levels; the protein expression level was well
consistent with the mRNA level. Taken together, DNA damage and repair capacity can be a biomarker of aging. Reduced expression
of DNA polymerase δ1 may be responsible for the decrease of DNA repair capacity in senescent cells. 相似文献
7.
8.
In a conscious newborn piglet model, exogenous leukotriene D4 was found to be a potent pulmonary and systemic vasoconstrictor with significant left ventricular depressant effect. The pulmonary pressor effect was seen only in the arterioles and not the veins. In hypoxia the pulmonary response was less. The findings were similar to that in lambs. The role of leukotrienes in hypoxic pulmonary vasoconstriction and the foetal pulmonary circulation needs further elucidation. 相似文献
9.
Polymorphisms in base-excision repair and nucleotide-excision repair genes in relation to lung cancer risk 总被引:7,自引:0,他引:7
De Ruyck K Szaumkessel M De Rudder I Dehoorne A Vral A Claes K Velghe A Van Meerbeeck J Thierens H 《Mutation research》2007,631(2):101-110
Polymorphisms in DNA repair genes may be associated with differences in DNA repair capacity, thereby influencing the individual susceptibility to smoking-related cancer. We investigated the association of 10 base-excision and nucleotide-excision repair gene polymorphisms (XRCC1 -77 T/C, Arg194Trp, Arg280His and Arg399Gln; APE1 Asp148Glu; OGG1 Ser326Cys; XPA -4 G/A; XPC PAT; XPD Asp312Asn and Lys751Gln) with lung cancer risk in Caucasians. Genotypes were determined by PCR-RFLP and PCR-single base extension assays in 110 lung cancer patients and 110 age- and sex-matched controls, and the results were analyzed using logistic regression adjusted for relevant covariates. A significant association between the APE1 Asp148Glu polymorphism and lung cancer risk was found, with adjusted odds ratios (OR) of 3.38 (p=0.001) for the Asp/Glu genotype and 2.39 (p=0.038) for the Glu/Glu genotype. Gene-smoking interaction analyses revealed a statistically significant interaction between cumulative cigarette smoking and the XRCC1 Arg399Gln and XPD Lys751Gln polymorphisms: these polymorphisms were significantly associated with lung cancer in nonsmokers and light smokers (<25 PY; OR=4.92, p=0.021 for XRCC1 399 Gln/Gln; OR=3.62, p=0.049 for XPD 751 Gln/Gln), but not in heavy smokers (> or =25 PY; OR=0.68, p=0.566 for XRCC1 399 Gln/Gln; OR=0.46, p=0.295 for XPD 751 Gln/Gln). Both the XRCC1 Arg194Trp and Arg280His as well as the OGG1 Ser326Cys heterozygous genotypes were associated with a significantly reduced risk for lung cancer (OR=0.32, p=0.024; OR=0.25, p=0.028; OR=0.51, p=0.033, respectively). No associations with lung cancer risk were found for the XRCC1 -77 T/C, the XPA -4 G/A and the XPC PAT polymorphisms. In conclusion, the APE1 Asp148Glu polymorphism is highly predictive for lung cancer, and cumulative cigarette smoking modifies the associations between the XRCC1 Arg399Gln and the XPD Lys751Gln polymorphisms and lung cancer risk. 相似文献
10.
Rabbit kidney cortex tissue slices were made ischemic (37 degrees C) for 60 min and then either reperfused in warm (37 degrees C) oxygenated physiologic buffer for 210 min or placed in UW Na gluconate solution (+/- quinacrine; 100 micromol/L) for 18 h followed by warm aerobic reperfusion. Slices were sampled at intervals and analyzed for malondialdehyde (MDA) content by HPLC. Control (nonischemic) slices had no change in MDA content over the duration of the experiment. Hypothermic storage of nonischemic slices did not result in any increase in MDA during reperfusion. Ischemic slices showed significant increases in MDA content during the first 1.5 h of reperfusion and remained elevated for the remainder of the experiment. Hypothermic storage of warm ischemic kidney slices resulted in a significant decrease in MDA content during the storage period. However, MDA content in these slices increased during warm reperfusion and was significantly higher than that in nonischemic controls. Quinacrine added during hypothermic storage of warm ischemic slices significantly decreased slice MDA content during warm reperfusion, an effect which was lost by increasing the storage solution calcium content. This study shows that aerobic hypothermic storage can aid in reducing oxidative stress in warm ischemic kidney tissue during reperfusion. This study suggests that the effects of quinacrine are at the level of the mitochondrion and not as an antioxidant compound. 相似文献
11.
The purpose of this study was to investigate the oxidative status in experimental hypothyroidism and the antioxidant effect of taurine supplementation. Forty male Sprague Dawley rats were randomly divided into four groups (group 1, control; group 2, control + taurine; group 3, propylthiouracil (PTU); group 4, PTU + taurine). Hypothyroidism was induced by giving 0.05% PTU in drinking water for 8 weeks. Taurine was supplemented in drinking water at a concentration of 1% for 5 weeks. Plasma (p < 0.05), red blood cell (p < 0.01), liver (p < 0.001) and kidney tissue (p > 0.05) malondialdehyde levels were increased in the PTU group compared with those of the control rats and were decreased in the PTU + taurine group compared with the PTU alone group. No significant changes were observed in glutathione levels of kidney and liver in the PTU group, but taurine supplementation significantly increased the glutathione levels of these tissues. Paraoxonase and arylesterase activities were decreased in the PTU group while taurine supplementation caused no significant changes in paraoxonase and arylesterase activities. These findings suggest that taurine supplementation may play a protective role against the increased oxidative stress resulting from hypothyroidism. 相似文献
12.
Tamir S Izrael S Vaya J 《The Journal of steroid biochemistry and molecular biology》2002,81(4-5):327-332
The formation of intracellular reactive oxygen and nitrogen species (ROS and RNS) has been implicated in the pathogenesis of a variety of diseases. In excess, ROS and their byproducts may cause oxidative damage and be cytotoxic to cells. Recently, it has been established that these oxidants can also act as subcellular messengers in gene regulatory and signal transduction pathways. Estrogen, on the other hand, is known to offer protection from coronary artery diseases in post-menopausal women and to be involved in various ROS-related diseases, such as Alzheimer's and Parkinson's diseases, diabetes and aging. The existence of estrogen receptors in these tissues lead us to investigate whether ROS can regulate their expression. We demonstrated here, for the first time, that oxidative stress induced by hydrogen peroxide (H(2)O(2)), Fe(2+), 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH) and activated macrophages, affect the expression of estrogen receptors alpha and beta (ERalpha and ERbeta) differently, demonstrating cell-specific response which can be blocked by antioxidants. This data suggest that oxidative stress and the production of ROS/RNS function as physiological regulators of ERalpha and ERbeta expression. This may provide a new insight into the ERbeta-dependent protective action of estrogen and phytoestrogens in inflammation involving diseases, and may contribute to the development of novel therapeutic treatment strategies. 相似文献
13.
Oxidative stress is associated with human diseases and the developmental retardation of animals. The hippocampus is particularly vulnerable to oxidative stress. MicroRNAs (miRNAs), expressed largely in the mammalian brain, are emerging as robust players and have been implicated in many cellular processes. The present study investigated the sub-tissue specificity of miRNA expression in the dorsal hippocampus (DH) and ventral hippocampus (VH) and evaluated the effects of oxidative stress induced by iron dextran (FeDex) treatment on miRNA expression in the DH and VH of pigs using RNA-sequencing technology and bioinformatics, respectively. The results demonstrated that the injection of FeDex significantly increased the levels of several markers of oxidative stress in serum of Rongchang piglets, which indicated that oxidative stress was successfully induced. Sub-tissue specificity was displayed with 54 differentially expressed miRNAs between the VH and DH. The induced oxidative stress emphasized 59 and 46 differentially expressed miRNAs in the DH and VH, respectively. GO and KEGG pathway analyses revealed that the predicted targets of these differentially expressed miRNAs were involved in the pathways that regulate the expression of genes associated with nervous system development, immune response and oxidative stress, which not only revealed the ability of miRNAs to influence complex gene networks in the DH and VH but also further corroborated the successful induction of oxidative stress. Collectively, the results of this study provide a valuable basis for future studies aimed at contributions of miRNAs induced by oxidative stress in growth retardation and neurodegenerative diseases of animals and human. 相似文献
14.
15.
Jin Sun Xiao-Li Hu Guo-Wei Le Yong-Hui Shi 《World journal of microbiology & biotechnology》2013,29(2):209-216
Iron (Fe) can promote hydrogen peroxide (H2O2) and hydroxyl radical generation in the colonic surface and promote growth of Fe-dependent bacteria. Some Lactobacillus strains are resistant to oxygen free-radicals, allowing them to survive in a Fe-modulated mucosal environment and influence colon microbial ecology and redox state. Here, we investigated the capacity of lactobacilli with different antioxidant abilities to modify the bacterial profile and prevent oxidative stress in the colon of Fe-overloaded mice. Survival time of Lactobacillus rhamnosus LGG (LGG) in the presence of H2O2 and hydroxyl radical was significantly longer compared with the mid- and non-antioxidative strains, Lactobacillus paracasei Fn032 and Lactobacillus plantarum Fn001, respectively. Different Lactobacillus strains are specific in free-radical scavenging activities of their cell-free extracts, which increased to varying extent depending on strains when bacteria were exposed to simulated gastric and pancreatic juice. Fe-overloaded mice showed increased colonic luminal ferrous Fe content, Enterococcus and Escherichia coli concentrations, mucosal malondialdehyde and free-radicals, and decreased mucosal total antioxidative capacity and oxidative enzymatic activity. Translocation of endotoxin to the liver was also significantly increased (P < 0.05). Lactobacilli inhibited ferrous Fe accumulation, especially in LGG and Fn032. LGG significantly inhibited the increase of colonic mucosal free-radicals and malondialdehyde content (P < 0.05). Fn032 only inhibited malondialdehyde (P < 0.05). LGG and Fn032 significantly inhibited increases in colonic Enterococcus (P < 0.05). Fn001 showed no significant antioxidative ability in vivo. The difference of these effects in vivo were well agreed with scavenging activities against reactive oxygen species (ROS) of simulated gastrointestinals fluid pretreated cells in vitro. In conclusion, ROS scavenging activities was essential for Lactobacillus to prevent oxidative stress in vivo and inhibition of ROS-producing bacterial growth and mucosal barrier injury. 相似文献
16.
Aristidis S. Veskoukis Michalis G. Nikolaidis Antonios Kyparos Dimitrios Kouretas 《Free radical biology & medicine》2009,47(10):1371-1374
This study investigated whether selected oxidative stress markers measured in blood adequately reflect redox status in skeletal muscle, heart, and liver. Several markers were determined after implementing two treatments known to affect redox status, namely exercise and allopurinol administration. Xanthine oxidase, thiobarbituric acid-reactive substances (TBARS), protein carbonyls (PC), reduced glutathione (GSH), oxidized glutathione (GSSG), catalase, and total antioxidant capacity were determined in blood, skeletal muscle, heart, and liver. Correlation between blood and tissues in each marker was performed through the Spearman rank correlation coefficient. GSSG in erythrocytes was correlated with all tissues, ranging in the five experimental groups as follows: skeletal muscle rs = 0.656–0.874, heart rs = 0.742–0.981, liver rs = 0.646–0.855. Xanthine oxidase and TBARS measured in blood satisfactorily described the redox status of the heart (0.753–0.964 and 0.705–1.000, respectively) and liver (0.755–0.902 and 0.656–1.000, respectively). Skeletal muscle and heart redox status can be adequately described by PC (0.652–1.000 and 0.656–0.964, respectively), GSH (0.693–1.000 and 0.656–1.000, respectively), and catalase (0.745–1.000 and 0.656–1.000, respectively) measured in blood. In conclusion, this study suggests that a combination of markers measured in blood provides a reliable indication about the redox status in skeletal muscle, heart, and liver. 相似文献
17.
18.
19.
Klaunig JE Xu Y Han C Kamendulis LM Chen J Heiser C Gordon MS Mohler ER 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1999,220(4):249-254
While the anticarcinogenic effects of tea in animal models have been reported by several groups, human epidemiological studies examining tea consumption and cancer prevention have produced equivocal results. The beneficial properties of tea to human health may be related to the antioxidant properties of tea components. However, little evidence has been provided that tea consumption can either increase the antioxidant capacity or decrease oxidative stress in humans. In the present study, the effects of tea treatment (green tea) on biomarkers of oxidative stress were investigated in smokers and nonsmokers in two volunteer study groups (one in China and the other in United States). Green tea consumption in both study groups decreased oxidative DNA damage (8-OHdG in white blood cells and urine), lipid peroxidation (MDA in urine), and free radical generation (2, 3-DHBA in urine) in smokers. Nonsmokers (US study group) also exhibited a decrease in overall oxidative stress. 相似文献
20.
Long-term alcohol consumption can cause oxidative stress and cytokines induction, which are associated with free radicals.
Quercetin, one of the most widely distributed flavonoids in plants, is a natural antioxidant. We investigated the hypothesis
that quercetin could prevent the ethanol-induced oxidative stress and decreases tumor necrosis factor-α (TNF-α) and interferon-γ
(INF-γ) as pro-inflammatory cytokines. Twenty-eight rats were randomly divided into control group (C), ethanol treatment group
(EtOH) (~1 ml/day, 80%; 2 g/kg body wt), intragastrically (i.g.), quercetin treatment group (Q), (100 mg/kg-body wt per 3 days)
i.g. and ethanol plus quercetin treatment group (EtOH + Q) (1 ml/day, 80% of ethanol and 100 mg/kg-body wt of quercetin per
3 days) i.g. for 30 days Plasma thiobarbituric acid reactive substance (TBARS) levels and protein carbonyl content were significantly
higher in the EtOH group than the C group (P < 0.01). On the other hand, TBARS level and protein carbonyl content in the EtOH + Q group was decreased significantly by
quercetin (P < 0.05, P < 0.01; respectively). While GSH levels in whole blood decreased in EtOH group compared to C group, they increased significantly
by quercetin (P < 0.05). Plasma ALT, TNF-α and IFN-γ levels increased significantly in the EtOH group compared to control group (P < 0.05, P < 0.01, P < 0.01, respectively), but they decreased significantly in the EtOH + Q group in comparison with EtOH group (P < 0.05, P < 0.01, P < 0.01, respectively). Our results demonstrate that quercetin treatment may provide a protection as reflected by decreased
plasma TBARS, protein carbonyls, TNF-α, INF-γ and ALT levels against ethanol-induced oxidative damage. 相似文献