首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Uteroplacental insufficiency (UPI) leads to intrauterine growth restriction (IUGR), which predisposes infants toward renal insufficiency early in life and increases the risk of kidney-related adult morbidities, such as hypertension. This compromised in utero environment has been demonstrated to impair nephrogenesis, as evidenced by a reduced nephron endowment in humans and in rats rendered IUGR by UPI. Concordantly, we have observed that IUGR rats have increased kidney p53 protein levels associated with increased apoptosis. Several factors can regulate p53 gene expression and activity, including posttranslational modifications and protein-protein interactions in the cell. Among these, two important mechanisms are 1) phosphorylation of the amino terminal serine 15 [phospho-p53 (Ser15)], which increases p53 stability and apoptotic activity, and 2) the murine double-minute (MDM2) functional circuit that limits further p53-induced apoptosis by promoting proteosomal degradation of p53. We hypothesize that UPI induces an increase in phospho-p53 (Ser15) in association with an absent MDM2 response, predisposing the kidney to increased apoptosis. To test our hypothesis, we induced IUGR through bilateral uterine artery ligation of the pregnant rat. UPI significantly increased phospho-p53 (Ser15), as well as ataxia teleangiectasia-mutated kinase/A-T-related kinase and dsDNA-activated protein kinase kinase levels, which induce phosphorylation of p53. In contrast, UPI induced no increase in kidney MDM2 mRNA and protein levels in IUGR pups. We conclude that among multiple mechanisms that affect nephrogenesis, UPI induces an increase in p53 phosphorylation without a corresponding increase in MDM2 expression, and we speculate that this response may contribute to the increased apoptosis previously described in the IUGR kidney.  相似文献   

4.
5.
6.
7.
Tumor suppressor p53 plays a crucial antiviral role and targeting of p53 by viral proteins is a common mechanism involved in virus oncogenesis. The activity of p53 is tightly regulated at the post-translational levels through a myriad of modifications. Among them, modification of p53 by SUMO has been associated with the onset of cellular senescence. Kaposi´s sarcoma-associated herpesvirus (KSHV) expresses several proteins targeting p53, including the latent protein LANA2 that regulates polyubiquitylation and phosphorylation of p53. Here we show that LANA2 also inhibits the modification of p53 by SUMO2. Furthermore, we show that the reduction of p53-SUMO2 conjugation by LANA2, as well as the p53-LANA2 interaction, both require the SUMOylation of the viral protein and its interaction with SUMO or SUMOylated proteins in a non-covalent manner. Finally, we show that the control of p53-SUMO2 conjugation by LANA2 correlates with its ability to inhibit SUMO2- and type I interferon-induced senescence. These results highlight the importance of p53 SUMOylation in the control of virus infection and suggest that viral oncoproteins could contribute to viral infection and cell transformation by abrogating p53 SUMOylation.  相似文献   

8.
Tumor suppressor p53 plays a crucial antiviral role and targeting of p53 by viral proteins is a common mechanism involved in virus oncogenesis. The activity of p53 is tightly regulated at the post-translational levels through a myriad of modifications. Among them, modification of p53 by SUMO has been associated with the onset of cellular senescence. Kaposi´s sarcoma-associated herpesvirus (KSHV) expresses several proteins targeting p53, including the latent protein LANA2 that regulates polyubiquitylation and phosphorylation of p53. Here we show that LANA2 also inhibits the modification of p53 by SUMO2. Furthermore, we show that the reduction of p53-SUMO2 conjugation by LANA2, as well as the p53-LANA2 interaction, both require the SUMOylation of the viral protein and its interaction with SUMO or SUMOylated proteins in a non-covalent manner. Finally, we show that the control of p53-SUMO2 conjugation by LANA2 correlates with its ability to inhibit SUMO2- and type I interferon-induced senescence. These results highlight the importance of p53 SUMOylation in the control of virus infection and suggest that viral oncoproteins could contribute to viral infection and cell transformation by abrogating p53 SUMOylation.  相似文献   

9.
GTSE-1 (G2 and S phase-expressed-1) protein is specifically expressed during S and G2 phases of the cell cycle. It is mainly localized to the microtubules and when overexpressed delays the G2 to M transition. Here we report that human GTSE-1 (hGTSE-1) protein can negatively regulate p53 transactivation function, protein levels, and p53-dependent apoptosis. We identified a physical interaction between the C-terminal regulatory domain of p53 and the C-terminal region of hGTSE-1 that is necessary and sufficient to down-regulate p53 activity. Furthermore, we provide evidence that hGTSE-1 is able to control p53 function in a cell cycle-dependent fashion. hGTSE-1 knock-down by small interfering RNA resulted in a S/G2-specific increase of p53 levels as well as cell sensitization to DNA damage-induced apoptosis during these phases of the cell cycle. Altogether, this work suggests a physiological role of hGTSE-1 in apoptosis control after DNA damage during S and G2 phases through regulation of p53 function.  相似文献   

10.
11.
The mdmx gene was shown to possess high homology to the mdm-2 gene and to encode a protein that can bind p53 and block p53 transactivation. Because Mdm-2 protein blocks the growth-suppressive activity of the p53 tumor-suppressor protein through similar activities, we examined the expression patterns of mdmx to determine how MdmX expression correlates with p53 protein levels. In this study, the expression pattern and protein levels of mdmx were examined in a number of cell culture systems. Like mdm-2, mdmx gene expression was constitutive during serum deprivation/restimulation of murine fibroblasts and differentiation of either murine teratocarcinoma or preadipocyte cells. In contrast, whereas mdm-2 gene expression was induced after cisplatin damage to ovarian carcinoma cells, mdmx expression remained constitutive. Because p53 transactivation is critical following a genotoxic stress, we examined p53:MdmX complexes after in vitro DNA-PK phosphorylation, a posttranslational modification that blocks p53 association with Mdm-2. The DNA-PK phosphorylation of p53 was capable of inhibiting p53:MdmX association. Thus, whereas DNA damage does not regulate mdmx mRNA levels, posttranslational modifications induced during DNA damage may block p53:MdmX association in vivo. These results demonstrate that, in the cell lines examined, mdmx gene expression remains constitutive during cell proliferation and differentiation or following DNA damage. Taken together, the data suggest that cells retain a constant level of MdmX. Thus, in undamaged cells, there exists the potential for an MdmX:p53 reservoir.  相似文献   

12.
p53具有抑制肿瘤细胞增殖的作用,但是细胞内p53蛋白的堆积反而加速细胞衰老或凋亡,因此对p53进行严格的调控显得格外重要.泛素化、磷酸化和乙酰化是p53蛋白最主要的几种修饰形式,但近来研究表明泛素化对p53调控发挥着中心作用.MDM2是主要的负调节因子,其具有泛素连接酶的活性,早先的研究认为MDM2的作用主要是特异性结合p53并介导其在蛋白酶作用下降解,但近来的研究发现MDM2还可以介导p53的核-浆交换,这种现象在DNA损伤时尤为明显.推测MDM2介导p53的泛素化在体内可能发挥着多种调控功能.  相似文献   

13.
The complexity of p53 stabilization and activation   总被引:10,自引:0,他引:10  
  相似文献   

14.
Posttranslational modifications regulate the function and stability of proteins, and the immune system is able to recognize some of these modifications. Therefore, the presence of posttranslational modifications increases the diversity of potential immune responses to a determinant antigen. The stimulation of tumor-specific CD4+ helper T lymphocytes (HTLs) is considered important for the production of anti-tumor antibodies by B cells and for the generation and persistence of CD8+ cytotoxic T lymphocytes, and in some instances, HTLs can directly reduce tumor cell growth. Identification of MHC class II-restricted peptide epitopes from tumor-associated antigens including those generated from posttranslational protein modifications should enable the improvement of peptide-based cancer immunotherapy. We describe here an MHC class II binding peptide from the tumor protein p53, which possesses an acetylated lysine at position 120 (p53110-124/AcK120) that is effective in eliciting CD4+ T cell responses specific for the acetylated peptide. Most importantly, the acetylated peptide-reactive CD4 HTLs recognized the corresponding naturally processed posttranslational modified epitope presented by either dendritic cells loaded with tumor cell lysates or directly on tumors expressing p53 and the restricting MHC class II molecules. Treatment of tumor cells with a histone deacetylase inhibitor augmented their recognition by the p53110-124/AcK120-reactive CD4+ T cells. These findings prove that the epitope p53110-124/AcK120 is immunogenic for anti-tumor responses and is likely to be useful for cancer immunotherapy.  相似文献   

15.
16.
17.
18.
Decision making by p53: life,death and cancer   总被引:17,自引:0,他引:17  
  相似文献   

19.
p53 functions to prevent malignant progression, in part by inhibiting proliferation or inducing the death of potential tumour cells. One of the most important regulators of p53 is MDM2, a RING domain E3 ligase that ubiquitinates p53, leading to both proteasomal degradation and relocation of p53 from the nucleus to the cytoplasm. Previous studies have suggested that although polyubiquitination is required for degradation, monoubiquitination of p53 is sufficient for nuclear export. Using a p53-ubiquitin fusion protein we show that ubiquitination contributes to two steps before export: exposure of a carboxy-terminal nuclear export sequence (NES), and dissociation of MDM2. Monoubiquitination can directly promote further modifications of p53 with ubiquitin-like proteins and MDM2 promotes the interaction of the SUMO E3 ligase PIASy with p53, enhancing both sumoylation and nuclear export. Our results suggest that modifications such as sumoylation can regulate the strength of the p53-MDM2 interaction and participate in driving the export of p53.  相似文献   

20.
肿瘤抑制因子p53被称为"分子警察",它在维持细胞正常生长及抑制恶性增殖过程中起重要作用。p53的表达水平受多种因素影响,其中转录水平的调控是基因发挥功能的一个重要步骤。因此,针对调控p53蛋白的转录因子这一环节阐明p53发挥功能的分子机理,有望为肿瘤治疗、预防和新药研发提供新的靶标。本文着重对调控p53蛋白的转录因子进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号