首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chromosome segregation in mitosis is orchestrated by protein kinase signaling cascades. A biochemical cascade named spindle checkpoint ensures the spatial and temporal order of chromosome segregation during mitosis. Here we report that spindle checkpoint protein MAD1 interacts with NEK2A, a human orthologue of the Aspergillus nidulans NIMA kinase. MAD1 interacts with NEK2A in vitro and in vivo via a leucine zipper-containing domain located at the C terminus of MAD1. Like MAD1, NEK2A is localized to HeLa cell kinetochore of mitotic cells. Elimination of NEK2A by small interfering RNA does not arrest cells in mitosis but causes aberrant premature chromosome segregation. NEK2A is required for MAD2 but not MAD1, BUB1, and HEC1 to associate with kinetochores. These NEK2A-eliminated or -suppressed cells display a chromosome bridge phenotype with sister chromatid inter-connected. Moreover, loss of NEK2A impairs mitotic checkpoint signaling in response to spindle damage by nocodazole, which affected mitotic escape and led to generation of cells with multiple nuclei. Our data demonstrate that NEK2A is a kinetochore-associated protein kinase essential for faithful chromosome segregation. We hypothesize that NEK2A links MAD2 molecular dynamics to spindle checkpoint signaling.  相似文献   

2.
SASH1, a member of the SLY-family of signal adapter proteins, is a candidate tumor suppressor in breast and colon cancer. Reduced expression of SASH1 is correlated with aggressive tumor growth, metastasis formation, and inferior prognosis. However, the biological role of SASH1 remains largely unknown. To unravel the function of SASH1, we have analyzed the intracellular localization of endogenous SASH1, and have generated structural SASH1 mutants. SASH1 localized to the nucleus as well as to the cytoplasm in epithelial cells. In addition, SASH1 was enriched in lamellipodia and membrane ruffles, where it co-distributed with the actin cytoskeleton. Moreover, we demonstrate a novel interaction of SASH1 with the oncoprotein cortactin, a known regulator of actin polymerization in lamellipodia. Enhanced SASH1 expression significantly increased the content of filamentous actin, leading to the formation of cell protrusions and elongated cell shape. This activity was mapped to the central, evolutionarily conserved domain of SASH1. Furthermore, expression of SASH1 inhibited cell migration and lead to increased cell adhesion to fibronectin and laminin, whereas knock-down of endogenous SASH1 resulted in significantly reduced cell–matrix adhesion. Taken together, our findings unravel for the first time a mechanistic role for SASH1 in tumor formation by regulating the adhesive and migratory behaviour of cancer cells.  相似文献   

3.
Loss of the tumour-suppressor gene TSC1 is responsible for hamartoma development in tuberous sclerosis complex (TSC), which renders several organs susceptible to benign tumours. Hamartin, the protein encoded by TSC1, contains a coiled-coil domain and is expressed in most adult tissues, although its function is unknown. Here we show that hamartin interacts with the ezrin-radixin-moesin (ERM) family of actin-binding proteins. Inhibition of hamartin function in cells containing focal adhesions results in loss of adhesion to the cell substrate, whereas overexpression of hamartin in cells lacking focal adhesions results in activation of the small GTP-binding protein Rho, assembly of actin stress fibres and formation of focal adhesions. Interaction of endogenous hamartin with ERM-family proteins is required for activation of Rho by serum or by lysophosphatidic acid (LPA). Our data indicate that disruption of adhesion to the cell matrix through loss of hamartin may initiate the development of TSC hamartomas and that a Rho-mediated signalling pathway regulating cell adhesion may constitute a rate-limiting step in tumour formation.  相似文献   

4.
5.
Astrocytic tumor is the most prevalent primary brain tumor. However, the role of cell surface carbohydrates in astrocytic tumor invasion is not known. In a previous study, we showed that polysialic acid facilitates astrocytic tumor invasion and thereby tumor progression. Here, we examined the role of HNK-1 glycan in astrocytic tumor invasion. A Kaplan-Meier analysis of 45 patients revealed that higher HNK-1 expression levels were positively associated with increased survival of patients. To determine the role of HNK-1 glycan, we transfected C6 glioma cells, which lack HNK-1 glycan expression, with β1,3-glucuronyltransferase-P cDNA, generating HNK-1-positive cells. When these cells were injected into the mouse brain, the resultant tumors were 60% smaller than tumors emerging from injection of the mock-transfected HNK-1-negative C6 cells. HNK-1-positive C6 cells also grew more slowly than mock-transfected C6 cells in anchorage-dependent and anchorage-independent assays. C6-HNK-1 cells migrated well after treatment of anti-β1 integrin antibody, whereas the same treatment inhibited cell migration of mock-transfected C6 cells. Similarly, α-dystroglycan containing HNK-1 glycan is different from those containing the laminin-binding glycans, supporting the above conclusion that C6-HNK-1 cells migrate independently from β1-integrin-mediated signaling. Moreover, HNK-1-positive cells exhibited attenuated activation of ERK 1/2 compared with mock-transfected C6 cells, whereas focal adhesion kinase activation was equivalent in both cell types. Overall, these results indicate that HNK-1 glycan functions as a tumor suppressor.  相似文献   

6.
Tumor necrosis factor (TNF) is a key player in inflammatory bowel disease and has been variably associated with carcinogenesis, but details of the cross talk between inflammatory and tumorigenic pathways remain incompletely understood. It has been shown that, in C57BL/6 mice, signaling via TNF receptor 1 (TNFR1) is protective from injury and inflammation in experimental colitis. Therefore, we hypothesized that loss of TNFR1 signaling would confer increased risk of developing colitis-associated carcinoma. Using three models of murine tumorigenesis based on repeated bouts of inflammation or systemic tumor initiator, we sought to determine the roles of TNF and TNFR1 with regard to neoplastic transformation in the colon in wild-type (WT), TNFR1 knockout (R1KO), and TNF knockout (TNFKO) mice. We found R1KO animals to have more severe disease, as defined by weight loss, hematochezia, and histology. TNFKO mice demonstrated less weight loss but were consistently smaller, and rates and duration of hematochezia were comparable to WT mice. Histological inflammation scores were higher and neoplastic lesions occurred more frequently and earlier in R1KO mice. Apoptosis is not affected in R1KO mice although epithelial proliferation following injury is more ardent even before tumorigenesis is apparent. Lastly, there is earlier and more intense expression of activated β-catenin in these mice, implying a connection between TNFR1 and Wnt signaling. Taken together, these findings show that in the context of colitis-associated carcinogenesis TNFR1 functions as a tumor suppressor, exerting this effect not via apoptosis but by modulating activation of β-catenin and controlling epithelial proliferation.  相似文献   

7.
Chmp1A (Chromatin modifying protein 1A/Charged multivesicular protein 1A) is a member of the ESCRT-III (Endosomal Sorting Complex Required for Transport) family that was shown to function in endosome-mediated trafficking via multivesicular body (MVB) formation and sorting. Recent reports suggest that ESCRT complexes are also involved in cell cycle progression and tumor development. Using in vitro and in vivo model systems, we provide evidence that Chmp1A is a novel tumor suppressor, especially in the pancreas. We demonstrated that short hairpin RNA (shRNA) mediated stable silencing of Chmp1A in HEK 293T cells resulted in an increase of anchorage-independent growth in soft agar assay and tumor formation in xenograft assay. To investigate the involvement of Chmp1A in human tumor development we screened human cancer arrays and pancreatic tissue arrays. We discovered that Chmp1A mRNA and protein was reduced and/or altered (protein) in various human pancreatic tumors. To investigate the biological implication of these data, we either over-expressed or silenced Chmp1A in human pancreatic ductal tumor cells (PanC-1) and studied the effect of these manipulations on cell and tumor growth respectively. Stable over-expression of Chmp1A in PanC-1 cells resulted in cell growth inhibition and tumor xenograft inhibition respectively. In contrast, silencing of Chmp1 in PanC-1 cells resulted in the elevation of cell growth in vitro. Mechanistically, over-expression of Chmp1A strongly increased the protein level of P53 and phospho-P53. Taken together, our data indicates that Chmp1A is a novel tumor suppressor, especially in pancreas and that Chmp1A regulates tumor growth potentially through P53 signaling pathway.  相似文献   

8.
It has been shown that bridging integrator 1 (BIN1) can interact with c-myelocytomatosis (c-Myc) oncoprotein in cancer. However, the role of BIN1 in hepatocellular carcinoma (HCC) is not clear. In the present study, we investigated the expression and prognostic role of BIN1 in primary HCC and evaluated the function of BIN1 in hepatocarcinogenesis. Using real-time polymerase chain reaction and Western blot analysis, we found significantly decreased expression of BIN1 in primary HCC tumor tissues (n = 42) compared with adjacent normal tissues and in HCC cell lines. Immunohistochemistry analysis also found decreased BIN1 expression in HCC tumor tissues (n = 117). In clinicopathological analysis, loss of BIN1 expression correlated significantly (P < 0.05) with differentiation scores and tumor size. Importantly, decreased expression of BIN1 in tumors was found to be closely associated with a poor prognosis, and we conclude that BIN1 was an independent prognostic factor in a multivariate analysis. In mechanistic studies, restoring BIN1 expression in BIN1-null HCC cells significantly inhibited cell proliferation and colony formation and induced apoptosis of HCC cells. Furthermore, we found that BIN1 overexpression could significantly suppress the motility and invasion of HCC cells in vitro. Our results indicate that BIN1 may function as a potential tumor suppressor and serve as a novel prognostic marker in HCC patients. The BIN1 molecule might play an important role in tumor growth, cell motility and invasion. Modulation of BIN1 expression may lead to clinical applications of this critical molecule in the control of hepatocellular carcinoma as well as in early and effective diagnosis of this aggressive tumor.  相似文献   

9.
p53 binding protein 1 (53BP1) is a putative DNA damage sensor that accumulates at sites of double-strand breaks (DSBs) in a manner dependent on histone H2AX. Here we show that the loss of one or both copies of 53BP1 greatly accelerates lymphomagenesis in a p53-null background, suggesting that 53BP1 and p53 cooperate in tumor suppression. A subset of 53BP1-/- p53-/- lymphomas, like those in H2AX-/- p53-/- mice, were diploid and harbored clonal translocations involving antigen receptor loci, indicating misrepair of DSBs during V(D)J recombination as one cause of oncogenic transformation. Loss of a single 53BP1 allele compromised genomic stability and DSB repair, which could explain the susceptibility of 53BP1+/- mice to tumorigenesis. In addition to structural aberrations, there were high rates of chromosomal missegregation and accumulation of aneuploid cells in 53BP1-/- p53+/+ and 53BP1-/- p53-/- tumors as well as in primary 53BP1-/- splenocytes. We conclude that 53BP1 functions as a dosage-dependent caretaker that promotes genomic stability by a mechanism that preserves chromosome structure and number.  相似文献   

10.
The involvement of miR-204 in lung cancer development is unclear. In our study, we analyzed the expression of miR-204 in tumor- and adjacent-tissue samples from 141 patients with non-small cell lung cancer (NSCLC). MiR-204 expression was decreased in tumor samples compared with non-cancerous tissue-derived controls. Moreover, miR-204 expression negatively correlated with homeobox protein SIX1 expression, tumor size and metastasis. MiR-204 silencing in miR-204-positive NSCLC cell lines promoted cell invasion and proliferation. Concomitantly, MiR-204 overexpression resulted in reduced cell proliferation and invasion, upregulated E-cadherin and downregulated N-cadherin and Vimentin expression. SIX1 was identified as a potential target of miR-204, and SIX1 silencing partially compromised the invasive and proliferative capacity of miR-204-deficient cells. Thus, miR-204 may be involved in the NSCLC development.  相似文献   

11.
12.
13.
14.
Aberrant regulation of APC/β-catenin signaling pathway is common in the pathogenesis of colorectal and other cancers. Targets regulated by APC/β-catenin signaling pathway play crucial roles in cancer development. In the current study, we aimed to illustrate the influence of APC/β-catenin signaling pathway on expression of microRNAs, one new group of players important to carcinogenesis. Restoration of APC function in colorectal cancer cells led to the deregulation of several cancer-related microRNAs, such as miR-122a which was recognized as the liver-specific microRNA. MiR-122a was down-regulated in gastrointestinal cancer cell lines as well as primary carcinoma tissues. Inhibition of miR-122a could reverse wild-type APC-induced growth inhibition of gastrointestinal cancer cells while miR-122a mimic inhibited cell growth. In summary, we identified some cancer-related microRNAs regulated by APC/β-catenin signaling pathway. The down-regulation of miR-122a mediated by aberrant APC/β-catenin signaling is important to the pathogenesis of gastrointestinal cancers.  相似文献   

15.
The INK4a gene, one of the most often disrupted loci in human cancer, encodes two unrelated proteins, p16(INK4a) and p14(ARF) (ARF) both capable of inducing cell cycle arrest. Although it has been clearly demonstrated that ARF inhibits cell cycle via p53 stabilization, very little is known about the involvement of ARF in other cell cycle regulatory pathways, as well as on the mechanisms responsible for activating ARF following oncoproliferative stimuli. In search of factors that might associate with ARF to control its activity or its specificity, we performed a yeast two-hybrid screen. We report here that the human homologue of spinophilin/neurabin II, a regulatory subunit of protein phosphatase 1 catalytic subunit specifically interacts with ARF, both in yeast and in mammalian cells. We also show that ectopic expression of spinophilin/neurabin II inhibits the formation of G418-resistant colonies when transfected into human and mouse cell lines, regardless of p53 and ARF status. Moreover, spinophilin/ARF coexpression in Saos-2 cells, where ARF ectopic expression is ineffective, somehow results in a synergic effect. These data demonstrate a role for spinophilin in cell growth and suggest that ARF and spinophilin could act in partially overlapping pathways.  相似文献   

16.
Du J  Hannon GJ 《Nucleic acids research》2002,30(24):5465-5475
Alterations in the activity of the centrosomal kinase, Aurora-A/STK15, have been implicated in centrosome amplification, genome instability and cellular transformation. How STK15 participates in all of these processes remains largely mysterious. The activity of STK15 is regulated by phosphorylation and ubiquitin-mediated degradation, and physically interacts with protein phosphatase 1 (PP1) and CDC20. However, the precise roles of these modifications and interactions have yet to be fully appreciated. Here we show that STK15 associates with a putative tumor and metastasis suppressor, NM23-H1. STK15 and NM23 were initially found to interact in yeast in a two-hybrid assay. Association of these proteins in human cells was confirmed by co-immunoprecipitation from cell lysates and biochemical fractionation indicating that STK15 and NM23-H1 are present in a stable, physical complex. Notably, SKT15 and NM23 both localize to centrosomes throughout the cell cycle irrespective of the integrity of the microtubule network in normal human fibroblasts.  相似文献   

17.
The connector enhancer of KSR (CNK) is a multidomain scaffold protein discovered in Drosophila, where it is necessary for Ras activation of the Raf kinase. Recent studies have shown that CNK1 also interacts with RalA and Rho and participates in some aspects of signaling by these GTPases. Herein we demonstrate a novel aspect of CNK1 function, i.e. reexpression of CNK1 suppresses tumor cell growth and promotes apoptosis. As shown previously for apoptosis induced by Ki-Ras(G12V), CNK1-induced apoptosis is suppressed by a dominant inhibitor of the mammalian sterile 20 kinases 1 and (MST1/MST2). Immunoprecipitates of MST1 endogenous to LoVo colon cancer cells contain endogenous CNK1; however, no association of these two polypeptides can be detected in a yeast two-hybrid assay. CNK1 does, however, bind directly to the RASSF1A and RASSF1C polypeptides, constitutive binding partners of the MST1/2 kinases. Deletion of the MST1 carboxyl-terminal segment that mediates its binding to RASSF1A/C eliminates the association of MST1 with CNK1. Coexpression of CNK1 with the tumor suppressive isoform, RASSF1A, greatly augments CNK1-induced apoptosis, whereas the nonsuppressive RASSF1C isoform is without effect on CNK1-induced apoptosis. Overexpression of CNK1-(1-282), a fragment that binds RASSF1A but is not proapoptotic, blocks the apoptosis induced by CNK1 and by Ki-Ras(G12V). Thus, in addition to its positive role in the proliferative outputs of active Ras, the CNK1 scaffold protein, through its binding of a RASSF1A.MST complex, also participates in the proapoptotic signaling initiated by active Ras.  相似文献   

18.
Although the short isoform of ErbB3-binding protein 1 (Ebp1), p42 has been considered to be a potent tumor suppressor in a number of human cancers, whether p42 suppresses tumorigenesis of lung cancer cells has never been clarified. In the current study we investigated the tumor suppressor role of p42 in non-small cell lung cancer cells. Our data suggest that the expression level of p42 is inversely correlated with the cancerous properties of NSCLC cells and that ectopic expression of p42 is sufficient to inhibit cell proliferation, anchorage-independent growth, and invasion as well as tumor growth in vivo. Interestingly, p42 suppresses Akt activation and overexpression of a constitutively active form of Akt restores the tumorigenic activity of A549 cells that is ablated by exogenous p42 expression. Thus, we propose that p42 Ebp1 functions as a potent tumor suppressor of NSCLC through interruption of Akt signaling. [BMB Reports 2015; 48(3): 159-165]  相似文献   

19.
LASS2/TMSG1 was a novel tumor metastasis suppressor gene, which was first cloned by our laboratory from non‐metastatic and metastatic cancer cell variants of human prostate carcinoma PC‐3M using mRNA differential display in 1999. LASS2/TMSG1 could interact with the C subunit of vacuolar ATPase (V‐ATPase, ATP6V0C) and regulate V‐ATPase activity. In an attempt to provide molecular mechanism of the interaction between LASS2/TMSG1 and V‐ATPase, we constructed four variant transfectants containing different functional domain of LASS2/TMSG1 and stably transfected the variants to human prostate cancer cell line PC‐3M‐1E8 cell with high metastatic potential. Results showed that there were no obvious differences of V‐ATPase expression among different transfected cells and the control. However, V‐ATPase activity and intracellular pH was significantly higher in the variant transfectants with Homeodomain of LASS2/TMSG1 than that in the control using the pH‐dependent fluorescence probe BECEF/AM. Immunoprecipitation, immunofluorescence and immuno‐electron microscope alone or in combination demonstrated the direct interaction of Homeodomain of LASS2/TMSG1 and ATP6V0C. Loss of Homeodomain markedly enhanced the proliferation ability but weakened the apoptotic effect of LASS2/TMSG1 in PC‐3M‐1E8 cells. These lines of results for the first time contribute to the conclusion that LASS2/TMSG1 could regulate V‐ATPase activity and intracellular pH through the direct interaction of its Homeodomain and the C subunit of V‐ATPase. Their interaction could play important roles in the apoptosis of tumor cells. J. Cell. Biochem. 114: 570–583, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Deleted in liver cancer-1 (DLC1), a potential tumor suppressor, acts as a GTPase-activating protein for Rho family members. In many human cancers, the DLC1 expression is frequently downregulated or inactivated, which allows cancer cells to proliferate and disseminate. In this review, we describe the characteristics and other members of the DLC1 family and delineate the signal pathways DLC1 involved in regulating cancer cell growth, colony formation, apoptosis, senescence, autophagy, migration and invasion. In addition, we explore the clinical data of DLC1 and the mechanisms that natural products upregulate the DLC1 expression to inhibit cancer. Despite these insights, many important unanswered questions remain about the exact mechanisms of DLC1-mediated cancer suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号