首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial DNA under siege in avian phylogeography   总被引:16,自引:1,他引:15  
Mitochondrial DNA (mtDNA) has been the workhorse of research in phylogeography for almost two decades. However, concerns with basing evolutionary interpretations on mtDNA results alone have been voiced since the inception of such studies. Recently, some authors have suggested that the potential problems with mtDNA are so great that inferences about population structure and species limits are unwarranted unless corroborated by other evidence, usually in the form of nuclear gene data. Here we review the relative merits of mitochondrial and nuclear phylogeographical studies, using birds as an exemplar class of organisms. A review of population demographic and genetic theory indicates that mitochondrial and nuclear phylogeographical results ought to concur for both geographically unstructured populations and for populations that have long histories of isolation. However, a relatively common occurrence will be shallow, but geographically structured mtDNA trees--without nuclear gene corroboration--for populations with relatively shorter periods of isolation. This is expected because of the longer coalescence times of nuclear genes (approximately four times that of mtDNA); such cases do not contradict the mtDNA inference of recent isolation and evolutionary divergence. Rather, the nuclear markers are more lagging indicators of changes in population structure. A review of the recent literature on birds reveals the existence of relatively few cases in which nuclear markers contradict mitochondrial markers in a fashion not consistent with coalescent theory. Preliminary information from nuclear genes suggests that mtDNA patterns will prove to be robust indicators of patterns of population history and species limits. At equilibrium, mitochondrial loci are generally a more sensitive indicator of population structure than are nuclear loci, and mitochondrial estimates of F(ST)-like statistics are generally expected to exceed nuclear ones. Hence, invoking behavioural or ecological explanations of such differences is not parsimonious. Nuclear genes will prove important for quantitative estimates of the depths of haplotype trees, rates of population growth and values of gene flow.  相似文献   

2.
Aim In this study, we analyse microevolutionary processes in common voles (Microtus arvalis) through the investigation of tooth morphological structure, in order to assess the relative impact of climate and phylogeographical history. Microevolutionary studies have shown that climate change may play a role in both population phylogeography and phenotypic differentiation. However, relatively little is known about the precise relationship between phylogeography and phenotypic variability and about how organisms respond to climate change. Location France, from sea level to the Alps (5 to > 2300 m a.s.l.). Methods This morphological analysis is based on first lower molar measurements from 16 geographically distinct common vole populations. Size and shape components are assessed separately. Population structure patterns are characterized using canonical variate analysis. We use phylogenetic analyses of two regions of mitochondrial DNA (the control region and the cytochrome b gene) to infer genetic structure. We calculate climate parameters from temperature and precipitation data. We investigate the influence of climate, geography and phylogeographical history on the phenotype using (1) multiple regression tests, (2) pairwise comparison of observation‐by‐variable matrices, and (3) a correlation method designed to compare three matrices. Results All populations were clearly structured, whatever the dataset. Neither size nor shape variation was correlated with climate parameters, but tooth shape was strongly correlated with both genetic structure and geographical distance. Main conclusions In French Microtus arvalis populations, molar shape differentiation is clearly associated with both phylogeographical history and geographical distance. Population phylogeographical history has a greater relevance than climate in accounting for variation in tooth morphology.  相似文献   

3.
Despite only limited Pleistocene glacial activity in the southern hemisphere, temperate forest species experienced complex distributional changes resulting from the combined effects of glaciation, sea level change and increased aridity. The effects of these historical processes on population genetic structure are now overlain by the effects of contemporary habitat modification. In this study, 10 microsatellites and 629 bp of the mitochondrial control region were used to assess the effects of historical forest fragmentation and recent anthropogenic habitat change on the broad-scale population genetic structuring of a southern temperate marsupial, the Tasmanian pademelon. A total of 200 individuals were sampled from seven sites across Tasmania and two islands in Bass Strait. High mitochondrial and nuclear genetic diversity indicated the maintenance of large historical population sizes. There was weak phylogeographical structuring of haplotypes, although all King Island haplotypes and three Tasmanian haplotypes formed a divergent clade implying the mid-Pleistocene isolation of a far northwestern population. Both the mitochondrial and nuclear data indicated a division of Tasmanian populations into eastern and western regions. This was consistent with a historical barrier resulting from increased aridity in the lowland 'midlands' region during glacial periods, and with a contemporary barrier resulting from recent habitat modification in that region. In Tasmania, gene flow appears to have been relatively unrestricted during glacial maxima in the west, while in the east there was evidence for historical expansion from at least one large glacial refuge and recolonization of Flinders Island.  相似文献   

4.
1. The phylogeography of freshwater taxa is often integrally linked with landscape changes such as drainage re‐alignments that may present the only avenue for historical dispersal for these taxa. Classical models of gene flow do not account for landscape changes and so are of little use in predicting phylogeography in geologically young freshwater landscapes. When the history of drainage formation is unknown, phylogeographical predictions can be based on current freshwater landscape structure, proposed historical drainage geomorphology, or from phylogeographical patterns of co‐distributed taxa. 2. This study describes the population structure of a sedentary freshwater fish, the chevron snakehead (Channa striata), across two river drainages on the Indochinese Peninsula. The phylogeographical pattern recovered for C. striata was tested against seven hypotheses based on contemporary landscape structure, proposed history and phylogeographical patterns of co‐distributed taxa. 3. Consistent with the species ecology, analysis of mitochondrial and microsatellite loci revealed very high differentiation among all sampled sites. A strong signature of historical population subdivision was also revealed within the contemporary Mekong River Basin (MRB). Of the seven phylogeographical hypotheses tested, patterns of co‐distributed taxa proved to be the most adequate for describing the phylogeography of C. striata. 4. Results shed new light on SE Asian drainage evolution, indicating that the Middle MRB probably evolved via amalgamation of at least three historically independent drainage sections and in particular that the Mekong River section centred around the northern Khorat Plateau in NE Thailand was probably isolated from the greater Mekong for an extensive period of evolutionary time. In contrast, C. striata populations in the Lower MRB do not show a phylogeographical signature of evolution in historically isolated drainage lines, suggesting drainage amalgamation has been less important for river landscape formation in this region.  相似文献   

5.
Abstract.— Coalescence theory predicts when genetic drift at nuclear loci will result in fixation of sequence differences to produce monophyletic gene trees. However, the theory is difficult to apply to particular taxa because it hinges on genetically effective population size, which is generally unknown. Neutral theory also predicts that evolution of monophyly will be four times slower in nuclear than in mitochondrial genes primarily because genetic drift is slower at nuclear loci. Variation in mitochondrial DNA (mtDNA) within and between species has been studied extensively, but can these mtDNA data be used to predict coalescence in nuclear loci? Comparison of neutral theories of coalescence of mitochondrial and nuclear loci suggests a simple rule of thumb. The “three‐times rule” states that, on average, most nuclear loci will be monophyletic when the branch length leading to the mtDNA sequences of a species is three times longer than the average mtDNA sequence diversity observed within that species. A test using mitochondrial and nuclear intron data from seven species of whales and dolphins suggests general agreement with predictions of the three‐times rule. We define the coalescence ratio as the mitochondrial branch length for a species divided by intraspecific mtDNA diversity. We show that species with high coalescence ratios show nuclear monophyly, whereas species with low ratios have polyphyletic nuclear gene trees. As expected, species with intermediate coalescence ratios show a variety of patterns. Especially at very high or low coalescence ratios, the three‐times rule predicts nuclear gene patterns that can help detect the action of selection. The three‐times rule may be useful as an empirical benchmark for evaluating evolutionary processes occurring at multiple loci.  相似文献   

6.
We quantify the population divergence processes that shaped population genetic structure in the Trans‐Volcanic bunchgrass lizard (Sceloporus bicanthalis) across the highlands of south‐eastern Mexico. Multilocus genetic data from nine nuclear loci and mitochondrial (mt)DNA were used to estimate the population divergence history for 47 samples of S. bicanthalis. Bayesian clustering methods partitioned S. bicanthalis into three populations: (1) a southern population in Oaxaca and southern Puebla; (2) a population in western Puebla; and (3) a northern population with a broad distribution across Hidalgo, Puebla, and Veracruz. The multilocus nuclear data and mtDNA both supported a Late Pleistocene increase in effective population size, and the nuclear data revealed low levels of unidirectional gene flow from the widespread northern population into the southern and western populations. Populations of S. bicanthalis experienced different demographic histories during the Pleistocene, and phylogeographical patterns were similar to those observed in many co‐distributed highland taxa. Although we recommend continuing to recognize S. bicanthalis as a single species, future research on the evolution of viviparity could gain novel insights by contrasting physiological and genomic patterns among the different populations located across the highlands of south‐eastern Mexico. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 852–865.  相似文献   

7.
Aim To examine the phylogeography and population structure of three dung beetle species of the genus Trypocopris (Coleoptera, Geotrupidae). We wanted to test whether genetic differences and genealogies among populations were in accordance with morphologically described subspecies and we aimed to establish times of divergence among subspecies to depict the appropriate temporal framework of their phylogeographical differentiation. We also wished to investigate the historical demographic events and the relative influences of gene flow and drift on the distribution of genetic variability of the different populations. Location Europe (mostly Italy). Methods We collected adult males from dung pats from 15 Italian localities over the period 2000–2002. For sequence analysis, some dried specimens from Albania, Croatia, Slovakia and Spain were also used. We applied cytochrome oxidase I mitochondrial DNA sequencing and the amplified fragment length polymorphism (AFLP) technique to determine whether phylogeographical patterns within the three species support the proposed hypotheses of subspecies designations, and to detect further structure among populations that might mediate diversification. Results and main conclusions The results show a high concordance between the distribution of mtDNA variation and the main morphological groups recognized as subspecies, which thus may represent independent evolutionary units. The degree of mitochondrial divergence suggests that speciation events occurred during the Pliocene, while diversification of the main subspecific lineages took place in the Pleistocene, from c. 0.3 to 1.5 Ma. Mitochondrial and nuclear data also reveal that there is phylogeographical structuring among populations within each of the main groups and that both contemporary and historical processes determined this pattern of genetic structure. Geographical populations form monophyletic clades in both phylogenetic and network reconstructions. Despite the high levels of intrapopulational diversity, FST values indicate moderate but significant genetic differentiation among populations, and a Bayesian clustering analysis of the AFLP data clearly separates the geographical populations. Nucleotide and gene diversity estimates reveal interspecific differences in the degree of diversification among populations that may be related to the different ecological requirements of the three species.  相似文献   

8.
The tiger‐fly Coenosia attenuata is a globally widespread predatory fly which is not only associated with greenhouse crops, but also occurs in open fields. It is a potential control agent against some of the more common pests in these crops. Assessing the genetic structure and gene flow patterns may be important for planning crop protection strategies and for understanding the historical processes that led to the present distribution of genetic lineages within this species. In the present study, the phylogeographical patterns of this species, based on mitochondrial cytochrome oxidase I and nuclear white and elongation factor‐1α genes, are described, revealing relatively low genetic diversity and weak genetic structure associated with a recent and sudden population expansion of the species. The geographical distribution of mitochondrial haplotypes indicates the Mediterranean as the most likely region of origin of the species. Some dispersal patterns of the species are also revaled, including at least three independent colonizations of North and South America: one from Middle East to North America with a strong bottleneck event, another from Europe to South America (Chile), with both likely to be a result of unintentional introduction, and a third one of still undetermined origin to South America (Ecuador). © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 308–326.  相似文献   

9.
In phylogeography, an empirical focus on gene lineages enables the history of population processes to be inferred from the simultaneous analysis of temporal and spatial patterns. Rapidly evolving cytoplasmic DNA has been the empirical workhorse propelling the success of this nascent field. Now, as more sophisticated historical models are being tested, there is a growing need for phylogeography to expand from a largely marker-specific discipline to a more general analytical approach that can be applied across independent loci. Recent results using nuclear haplotypes to study phylogeography indicate that the anticipated technical and biological hurdles can be overcome in many taxa to achieve phylogeographical comparisons across unlinked loci. Although many challenges remain, a more complete understanding of the historical, demographic and selective processes shaping phylogeographical patterns is emerging.  相似文献   

10.
Phylogeography of red deer (Cervus elaphus) in Europe   总被引:1,自引:0,他引:1  
Aim To investigate the phylogeographical patterns of red deer (Cervus elaphus) in Europe, and to disentangle the influence of ancient (e.g. Pleistocene ice ages) from more recent processes (e.g. human translocations). Location Europe. Methods In this study we provide by far the most extensive analysis of genetic structure in European red deer, based on analyses of variation at two mitochondrial markers (cyt b and D‐loop) in a large number of individuals from 39 locations. Relationships of mitochondrial DNA haplotypes were determined using minimum spanning networks and phylogenetic analyses. Population structure was examined by analyses of molecular variance. Historical processes shaping the present patterns were inferred from nested clade analysis and nucleotide diversity statistics. Results Within Europe, we detected three deeply divergent mitochondrial DNA lineages. The three lineages displayed a phylogeographical pattern dividing individuals into western European, eastern European and Mediterranean (Sardinia, Spain and Africa) groups, suggesting contraction into three separate refugia during the last glaciation. Few haplotypes were shared among these three groups, a finding also confirmed by FST values. Calculations of divergence times suggest that the groups probably split during the Pleistocene. Main conclusions The observed pattern is interpreted to result from isolation in different refugia during the last glaciation. The western and eastern European lineages could be linked to an Iberian and Balkan refugium, respectively. The third lineage might originate from a Sardinian or African refugium. We link local phylogeographical patterns observed in Europe to the post‐glacial recolonization process, shaped by the geographical localization of refugia and barriers to gene flow. Regardless of the importance of red deer as a game species and the tradition of translocating red deer in Europe, we detected few individuals that did not match the trichotomous pattern, suggesting that translocations have occurred mainly at smaller spatial scales.  相似文献   

11.
Aim We used inferences of phylogeographical structure and estimates of divergence times for three species of gophersnakes (Colubridae: Pituophis) distributed across the Mexican Transition Zone (MTZ) to evaluate the postulated association of three Neogene geological events (marine seaway inundation of the Isthmus of Tehuantepec, formation of the Transvolcanic Belt across central Mexico, and secondary uplifting of the Sierra Madre Occidental) and of Pleistocene climate change with inter‐ and intraspecific diversification. Location Mexico, Guatemala, and the western United States. Methods We combined range‐wide sampling (67 individuals representing three putative species distributed across northern Middle America and western North America) and phylogenetic analyses of 1637 base pairs of mitochondrial DNA to estimate genealogical relationships and divergence times. The hypothesized concordance of inferred gene trees with geological histories was assessed using topology tests. Results We identified three major lineages of Middle American gophersnakes, and strong phylogeographical structure within each lineage. Gene trees were statistically congruent with hypothesized geological histories for two of the three postulated geological events. Estimated divergence dates and the geographical distribution of genetic variation further support mixed responses to these geological events. Considerable phylogeographical structure appears to have been generated during the Pleistocene. Main conclusions Phylogenetic and phylogeographical structure in gophersnakes distributed across northern Middle America and western North America highlights the influence of both Neogene vicariance events and Pleistocene climate change in shaping genetic diversity in this region. Despite the presence of two major geographical barriers in southern Mexico, extreme geological and environmental heterogeneity in this area may have differentially structured genetic diversity in highland taxa. To the north, co‐distributed taxa may display a more predictable pattern of diversification across the warm desert regions. Future studies should incorporate nuclear data to disentangle inferred lineage boundaries and further elucidate patterns of mitochondrial introgression.  相似文献   

12.
Zhang AB  Kubota K  Takami Y  Kim JL  Kim JK  Sota T 《Molecular ecology》2005,14(12):3823-3841
We investigated the species status and intraspecific phylogeography in South Korea of two ground beetle species, Coptolabrus jankowskii and Coptolabrus smaragdinus (Coleoptera: Carabidae), using statistical parsimony networks and nested clade analyses based on sequences from the mitochondrial cytochrome oxidase subunit I (COI) and nuclear phosphoenolpyruvate carboxykinase (PepCK) and wingless (Wg) genes. Although traditional parsimony tree construction generally failed to resolve interspecific relationships and construct biologically meaningful genealogies, analysis using statistical parsimony networks yielded statistically significant inter- and intraspecific genealogical structures. We found that although these two species represent a notable case of trans-species polymorphisms in both mitochondrial and nuclear gene sequences, their status as separate species was evidenced by the nonrandom association between species and nested clades at various nesting levels. The exceptional occurrence of shared identical or very similar COI sequences was considered to be the result of introgressive hybridization. In addition, range expansion and fragmentation events across the Korean Peninsula and adjacent islands were inferred from nested clade phylogeographical analyses. The COI gene revealed the geographical divergence of major eastern and western clades and historical biogeographical events within each major clade, whereas the nuclear PepCK gene, which did not reveal corresponding east-west clades, indicated past fragmentation and range expansion across wide areas that may have been the result of older biogeographical events. Thus, phylogeographical inferences drawn from analyses of mitochondrial and nuclear genes can reveal different and potentially complementary information about phylogeographical processes.  相似文献   

13.
In a phylogeographical survey of the Italian wall lizard, Podarcis sicula, DNA sequence variation along an 887-bp segment of the cytochrome b gene was examined in 96 specimens from 86 localities covering the distribution range of the species. In addition, parts of the 12S rRNA and 16S rRNA genes from 12 selected specimens as representatives of more divergent cytochrome b haploclades were sequenced (together about 950 bp). Six phylogeographical main groups were found, three representing samples of the nominate subspecies Podarcis sicula sicula and closely related subspecies and the other three comprising Podarcis sicula campestris as well as all subspecies described from northern and eastern Adriatic islands. In southern Italy a population group with morphological characters of P. s. sicula but with the mitochondrial DNA features of P. s. campestris was detected indicating a probably recent hybridization zone. The present distribution patterns were interpreted as the consequence of natural events like retreats to glacial refuges and postglacial area expansions, but also as the results of multiple introductions by man.  相似文献   

14.
Aim The present‐day population structure of a species reflects the influence of population history as well as contemporary processes. Little is known about the mechanisms that have shaped the geographical distribution of genetic diversity in marine species present on the south‐eastern Pacific (SEP) coast. Here we provide the first comprehensive phylogeographical study of a species distributed along the SEP coast by analysing the endemic and emblematic muricid gastropod Concholepas concholepas. Location The study localities were distributed along the SEP coast ranging from Matarani (11° S) to Puerto Eden (49° S), crossing three major biogeographical provinces: Peruvian Province, Intermediate Area and Magellanic Province. Methods A total of 337 specimens of C. concholepas were collected from 14 localities in the three biogeographical provinces/areas. Mitochondrial cytochrome oxidase I (COI) gene partial sequences (658 bp) were obtained and analysed using coalescence‐based methods to infer molecular diversity and phylogeographical patterns. Results Across the 337 individuals, we found a large diversity, with a total of 179 haplotypes at the COI gene fragment. Although a slight decrease in gene diversity was observed from north to south, an analysis of molecular variance did not reveal any significant spatial population differentiation from Peru to the tip of Chile, not even across the recognized biogeographical boundaries at 30° S and 42° S. In addition, a star‐like haplotype network suggested the past occurrence of a rapid demographic and geographical expansion over the total range examined. Calculations of the onset of this expansion suggest that it might be due to climatic conditions during the period of the marine isotope stage 11 (MIS 11, 400,000 years ago), the longer and warmer interglacial episode during the Pleistocene epoch. Main conclusions Our phylogeographical analyses indicate that in the recent past C. concholepas mitochondrial DNA lineages underwent a sudden population expansion event. In addition, our data do not support the hypothesis of concordance between biogeographical barriers and phylogeographical breaks along the SEP coast. These two results are in accordance with the paradigm of high larval dispersal ability in marine species with an extended pelagic larval phase.  相似文献   

15.
Aim To evaluate the role of historical processes in the evolution of Sclerurus leaftossers by integrating phylogenetic and phylogeographical approaches. Location Humid forests of the Neotropical region. Methods We reconstructed the evolutionary history of Sclerurus based on DNA sequences representing all species and 20 of the 26 recognized subspecies using one autosomal nuclear locus and three protein‐coding mitochondrial gene sequences. Phylogenetic relationships were inferred using Bayesian and maximum‐likelihood methods. We used Bayesian coalescent‐based approaches to evaluate demographic changes through time, and to estimate the timing of diversification events. Based on these results, we examined the temporal accumulation of divergence events using lineage‐through‐time plots. Results The monophyly of all Sclerurus species was strongly supported except for Sclerurus mexicanus, which was paraphyletic in relation to Sclerurus rufigularis, and for the sister pair Sclerurus scansorSclerurus albigularis, which were not reciprocally monophyletic in the nuclear tree. We found remarkably deep phylogeographical structure within all Sclerurus species, and overall this structure was congruent with currently recognized subspecies and Neotropical areas of endemism. Diversification within Sclerurus has occurred at a relatively constant rate since the Middle Miocene. Main conclusions Our results strongly support the relevance of physiographical (e.g. Nicaragua Depression, Isthmus of Panama, Andean Cordillera, great rivers of Amazonia) and ecological barriers (open vegetation corridor) and ecological gradients (elevational zonation) to the diversification of Neotropical forest‐dwelling organisms. Despite the high congruence among the spatial patterns identified, the variance in divergence times suggests multiple speciation events occurring independently across the same barrier, and a role for dispersal. The phylogenetic patterns and cryptic diversity uncovered in this study demonstrate that the current taxonomy of Sclerurus underestimates the number of species.  相似文献   

16.
By using both mitochondrial and nuclear multiloci markers, we explored population genetic structure, gene flow and sex-specific dispersal of frillneck lizards ( Chlamydosaurus kingii ) sampled at three locations, separated by 10 to 50 km, in a homogenous savannah woodland in tropical Australia. Apart from a recombinant lizard, the mitochondrial analyses revealed two nonoverlapping haplotypes/populations, while the nuclear markers showed that the frillneck lizards represented three separate clusters/populations. Due to the small population size of the mtDNA, fixation may occur via founder effects and/or drift. We therefore suggest that either of these two processes, or a combination of the two, are the most likely causes of the discordant results obtained from the mitochondrial and the nuclear markers. In contrast to the nonoverlapping mitochondrial haplotypes, in 12 out of 74 lizards, mixed nuclear genotypes were observed, hence revealing a limited nuclear gene flow. Although gene flow should ultimately result in a blending of the populations, we propose that the distinct nuclear population structure is maintained by frequent fires resulting in local bottlenecks, and concomitant spatial separation of the frillneck lizard populations. Limited mark–recapture data and the difference in distribution of the mitochondrial and nuclear markers suggest that the mixed nuclear genotypes were caused by juvenile male-biased dispersal.  相似文献   

17.
Aim  Phylogeographical breaks may reflect historical or present-day impediments to gene flow, and the congruence of these breaks across multiple species lends insight into evolutionary history and connectivity among populations. In marine systems, examining the concordance of phylogeographical breaks is challenging due to the varied sampling scales in population genetics studies and the diverse life histories of marine organisms. A quantitative approach that considers the effects of sampling scale and species life history is needed.
Location  The south-east and south-west coasts of the United States.
Methods  We quantitatively analysed previously published datasets of marine fauna to look for concordance among phylogeographical breaks. We used a bootstrap approach to determine the regions where phylogeographical breaks are more common than expected by chance among species with planktonic dispersal as well as those with restricted dispersal.
Results  On the south-west coast, breaks were clustered near Point Conception among planktonic dispersers and near Los Angeles among restricted dispersers. On the south-east coast, breaks were most common near the southern tip of Florida for planktonic dispersers and near Cape Canaveral for restricted dispersers.
Main conclusions  Dispersal ability is an important determinant of phylogeographical patterns in marine species. Breaks among planktonic dispersers on both coasts are congruent with present-day flow-mediated barriers to dispersal, suggesting that phylogeographical structure in species with planktonic larvae may reflect contemporary oceanography, while breaks in restricted dispersers reflect historical processes. These results highlight the importance of explicitly considering sampling scale and life history when evaluating phylogeographical patterns.  相似文献   

18.
Comparative phylogeographical studies in island archipelagos can reveal lineage-specific differential responses to the geological and climatic history. We analysed patterns of genetic diversity in six codistributed lineages of darkling beetles (Tenebrionidae) in the central Aegean archipelago which differ in wing development and habitat preferences. A total of 600 specimens from 30 islands and eight adjacent mainland regions were sequenced for mitochondrial cytochrome oxidase I and nuclear Muscular protein 20. Individual gene genealogies were assessed for the presence of groups that obey an independent coalescent process using a mixed Yule coalescent model. The six focal taxa differed greatly in the number of coalescent groups and depth of lineage subdivision, which was closely mirrored by the degree of geographical structuring. The most severe subdivision at both mitochondrial DNA and nuclear DNA level was found in flightless lineages associated with presumed stable compact-soil habitats (phrygana, maquis), in contrast to sand-obligate lineages inhabiting ephemeral coastal areas that displayed greater homogeneity across the archipelago. A winged lineage, although associated with stable habitats, showed no significant phylogenetic or geographical structuring. Patterns of nucleotide diversity and local genetic differentiation, as measured using ΦST and hierarchical amova , were consistent with high levels of ongoing gene flow in the winged taxon; frequent local extinction and island recolonisation for flightless sand-obligate taxa; and very low gene flow and geographical structure largely defined by the palaeogeographical history of the region in flightless compact-soil taxa. These results show that differences in dispersal rate, mediated by habitat persistence, greatly influence the levels of phylogeographical subdivision in lineages that are otherwise subjected to the same geological events and palaeoclimatic changes.  相似文献   

19.
Free‐living nematodes are ubiquitous and highly abundant in terrestrial and aquatic environments, where they sustain ecosystem functioning by mineralization processes and nutrient cycling. Nevertheless, very little is known about their true diversity and intraspecific population structure. Recent molecular studies on marine nematodes indicated cryptic diversity and strong genetic differentiation of distinct populations, but for freshwater nematode species, analogous studies are lacking. Here, we present the first extensive molecular study exploring cryptic species diversity and genetic population structure of a widespread freshwater nematode morphospecies, Tobrilus gracilis, from nine postglacially formed European lakes. Taxonomic species status of individuals, analysed for fragments of the mitochondrial COI gene and for the large (LSU) and small (SSU) ribosomal subunits, were determined by morphological characteristics. Mitochondrial and nuclear markers strongly supported the existence of three distinct genetic lineages (Tg I–III) within Tobrilus gracilis, suggesting that this morphospecies indeed represents a complex of highly differentiated biological species. High genetic diversity was also observed at the population level. Across the nine lakes, 19 mitochondrial, and seven (LSU) and four (SSU) nuclear haplotypes were determined. A phylogeographical analysis revealed remarkable genetic differentiation even among neighbouring lake populations for one cryptic lineage. Priority and persistent founder effects are possible explanations for the observed population structure in the postglacially colonized lakes, but ask for future studies providing direct estimates of freshwater nematode dispersal rates. Our study suggests therefore that overall diversity of limnetic nematodes has been so far drastically underestimated and challenges the assumed ubiquitous distribution of other, single freshwater nematode morphospecies.  相似文献   

20.
Macaronesia (north‐east Atlantic archipelagos) has been host to complex patterns of colonization and differentiation in many groups of organisms including seabirds such as gadfly petrels (genus Pterodroma). Considering the subspecies of widely distributed soft‐plumaged petrel for many years, the taxonomic status of the three gadfly petrel taxa breeding in Macaronesia is not yet settled, some authors advocating the presence of three, two or one species. These birds have already been the subject of genetic studies with only one mtDNA gene and relatively modest sample sizes. In this study, using a total of five genes (two mitochondrial genes and three nuclear introns), we investigated the population and phylogeographical histories of petrel populations breeding on Madeira and Cape Verde archipelagos. Despite confirming complete lineage sorting with mtDNA, analyses with nucDNA failed to reveal any population structuring and Isolation with Migration analysis revealed the absence of gene flow during the differentiation process of these populations. It appears that the three populations diverged in the late Pleistocene in the last 150 000 years, that is 10 times more recently than previous estimates based solely on one mtDNA gene. Finally, our results suggest that the Madeira petrel population is ancestral rather than that from Cape Verde. This study strongly advocates the use of nuclear loci in addition to mtDNA in demographical and phylogeographical history studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号