首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erwinia soft rot is a destructive disease of Brassica rapa vegetables. Reliable sources of resistance and control methods are limited, so development of highly resistant breeding lines is desirable. Protoplasts from B. rapa and B. oleracea genotypes selected for resistance to soft rot were fused in order to combine different sources of resistance. Twelve somatic hybrids (synthetic B. napus) were obtained and confirmed by morphology, nuclear DNA content, and RAPD analysis. They were normal looking plants that easily set seeds following self-pollination and backcrossing to B. rapa. Assays of detached leaves or seedlings inoculated in a mist-chamber showed that most somatic hybrids had lower disease severity ratings than the B. rapa fusion partner and a commercial variety of B. napus. Some progeny from selfing or backcrossing of somatic hybrids to B. rapa showed much more resistance than either fusion partner. The offspring populations of the somatic hybrids (F1–S1 and F1–BC1) clearly moved to the resistant direction compared to the parents; the percentage of resistant plants increased from 21% (average of parents) to 36% (F1–S1) and 48% (F1–BC1). These results suggest that it may be possible to obtain highly resistant B. rapa lines by further backcrossing and selection. Received: June 1999 / Accepted: 29 July 1999  相似文献   

2.
 Results are reported on the production and characterization of somatic hybrids between Allium ampeloprasum and A. cepa. Both symmetric and asymmetric protoplast fusions were carried out using a polyethylene-based mass fusion protocol. Asymmetric fusions were performed using gamma ray-treated donor protoplasts of A. cepa and iodoacetamide-treated A. ampeloprasum protoplasts. However, the use of gamma irradiation to eliminate or inactivate the donor DNA of A. cepa proved to be detrimental to the development of fusion calli, and thus it was not possible to obtain hybrids from asymmetric fusions. The symmetric fusions yielded a high number of hybrid calli and regenerated plants. The analysis of the nuclear DNA composition using interspecific variation of rDNA revealed that most of the regenerated plants were hybrids. Flow cytometric analysis of nuclear DNA showed that these hybrid plants contained a lower DNA content than the sum of the DNA amounts of the parental species, suggesting that they were aneuploid. A shortage of chromosomes in the hybrids was confirmed by genomic in situ hybridization. Chromosome counts in metaphase cells of six hybrids revealed that these plants lacked 2–7 leek chromosomes. One hybrid showed also the loss of onion chromosomes. The hybrids had an intermediate phenotype in leaf morphology. The application of these somatic hybrids in breeding is discussed. Received: 7 April 1997 / Accepted: 10 September 1997  相似文献   

3.
Plants were regenerated from mesophyll protoplasts of Ipomoea cairica L., a wild relative of sweetpotato (Ipomoea batatas (L.) Lam.), and somatic hybrids between I. cairica L. and sweetpotato cv. Xushu 18 were obtained by PEG-mediated method. I. cairica L. protoplasts were isolated from the leaves of in vitro grown plants and cultured in a modified MS medium containing 0.05 mg l−1 2,4-D and 0.5 mg l−1 kinetin. Nine weeks after plating, the obtained small calluses up to about 2 mm in diameter were transferred to solid MS medium supplemented with 0.05 mg l−1 2,4-D and 0.5 mg l−1 kinetin for callus proliferation. Three weeks after transfer, the calluses were transferred to MS medium supplemented with 0–1.0 mg l−1 IAA and 1.0–3.0 mg l−1 BAP and further to hormone-free MS medium for plant regeneration. The frequencies of calluses forming plants ranged from 6.0% to 41.3% based on the different concentrations of IAA and BAP, and 2.0 mg l−1 BAP gave the highest regeneration frequency of protoplast-derived calluses in I. cairica L.. The regenerated plants, when transferred to soil, showed 100% survival. No morphological variations were observed. Mesophyll protoplasts of I. cairica L. were fused with protoplasts isolated from embryogenic suspension cultures of Xushu 18 by PEG-mediated method. The fused products were cultured with the best protoplast culture system of I. cairica L.. Finally, 114 plants were produced from 63 of the 182 calluses derived from the fused protoplasts, and 46 plants of them were confirmed to be somatic hybrids through peroxidase isozyme, RAPD, morphological and cytological analyses.  相似文献   

4.
In order to investigate chromosome elimination in symmetric somatic hybridization between Bupleurum scorzonerifolium and Arabidopsis thaliana, protoplasts were isolated from suspension cultures of both A. thaliana and B. scorzonerifolium parents. Biparental protoplasts were mixed at a rate of 1.5:1 and fused with PEG-method. After protoplast fusion, the products were cultured in the P5 liquid medium for microcallus formation. Single cell lines formed from microcalli after subculturing on the MB1 (Xia and Chen, Plant Sci 120:197–203, 1996) solid medium. The putative somatic hybrid cell lines were identified by cytological and molecular analysis. Of the 132 somatic cell lines generated, 16 were identified as somatic hybrids, with the phenotypes resembled B. scorzonerifolium parent. These hybrids showed a complete set of B. scorzonerifolium chromosome and 0–2 small chromosome(s) of A. thaliana. A few of them showed nuclear and cytoplasmic SSR fragments of A. thaliana. These hybrid cell lines could differentiate to green spots, buds/leaves through complementation of regeneration ability. The chromosomes elimination of A. thaliana was discussed. Wang Minqin and Zhao Junsheng contributed equally to the work.  相似文献   

5.
Summary Following fusion of protoplasts from a chlorophyll-deficient diploid mutant of Datura innoxia Mill. which can be regenerated to shoots, with green wild-type protoplasts of Datura stramonium L. var. tatula L. which can not, it was possible to isolate 49 green hybrid calli on agar medium. Most of these somatic hybrid calli gave rise to leaves and shoots. The chromosome numbers of the somatic hybrids were determined: 15 were tetraploid (amphidiploid), 24 hexaploid, and the other showed an aneuploid chromosome number.In a similar experiment protoplasts of the Datura innoxia mutant were fused with green wild-type protoplasts of Datura discolor Bernh. which are also not able to be regenerated, four green calli were obtained from which leaves and shoots developed after some transfers on agar medium. Three of them showed the amphidiploid (48) chromosome number, whereas one possessed an aneuploid number of 46 chromosomes.After transfer of rooted shoots to soil flowering plants could be obtained in both combinations. The habits of the somatic hybrids in both combinations were intermediate between the habits of the respective parental plants.Dedicated to my father, Prof. Dr. Theodor Schieder, on the occasion of his 70th birthday.  相似文献   

6.
In order to obtain plants that were somatic hybrids of barley (Hordeum vulgare L.) and carrot (Daucus carota L.), we fused protoplasts that had been isolated from 6-month-old suspension cultures of carrot cells with protoplasts isolated from barley mesophyll by electrofusion. After culture for 1 month at 25°C , the cells were cultured for 5 weeks at 4°C , and were then returned to 25°C for culture on a shoot-inducing medium. Three plants (nos. 1, 2 and 3) were regenerated from the cells. The morphology of the regenerated plants closely resembled that of the parental carrot plants. A cytological analysis of callus cultures induced from these plants indicated that most of the cells had about 24 chromosomes, fewer than the sum of the numbers of parent chromosomes which was 32. Southern hybridization analysis with fragments of the rgp1 gene used as probe showed that the regenerated plants contained both barley and carrot genomic DNA. Chloroplast (ct) and mitochondrial (mt) DNAs were also analyzed with several probes. The ctDNA of the regenerated plants yielded hybridization bands specific for both barley and carrot when one fragment of rice ctDNA was used as probe. Furthermore, the regenerated plants yielded a barley specific band and a novel band with another fragment of rice ct DNA as a probe. One of the regenerated plants (no. 1) yielded a novel pattern of hybridized bands of mt DNA (with an atp6 probe) that was not detected with either of the parents. These results indicated that the regenerated plants were somatic hybrids of barley and carrot and that recombination of both the chloroplast genomes and the mitochondrial genomes might have occurred. Received: 28 May 1996 / Accepted: 2 August 1996  相似文献   

7.
Protoplasts were isolated from the young leaves of rapid cycling Brassica rapa and cotyledons and hypocotyls of 10-day-old Brassica juncea seedlings. Protoplasts were fused by 40% polyethylene glycol and cultured in modified K8p medium supplemented with 2.5 mg·l−1 isopentenyladenine (2ip), 0.5 mg·l−1 naphthaleneacetic acid, 1 mg·l−1 2,4-dichlorophenoxyacetic acid (2,4-D), 0.1 mg·l−1 zeatin, 1% dimethyl sulfoxide, and 0.4 M mannitol as osmoticum. After 3 days of initial culture, 3 different culture methods were employed and evaluated. The highest plating efficiency (1.97%) was obtained with a semi-solid agarose embedding culture method. Both shoots and somatic embryos formed from protoplast culture-derived calli. The somatic embryos were derived from asymmetrically divided calli that developed progressively into deep-purple heart shapes as well as the early-torpedo and bipolar stages to finally form complete plantlets. Thirteen putative somatic hybrids were produced via somatic embryogenesis or organogenesis. Random amplified polymorphism DNA analysis was performed to identify somatic hybrids. Six regenerated plants had a chromosome number of 2n = 56 the same as the sum of B. juncea (2n = 36) and B. rapa (2n = 20) chromosomes; 2 plants had a chromosome number of 2n = 54. These regenerated plants exhibited morphology intermediate to those of their parents. The flowers of somatic hybrids exhibited a range of variation; some were normal, while others were abnormal. No pollen was produced from regenerated plants. Two plants had crinkled petal-like stamens.  相似文献   

8.
Summary Somatic hybrid plants have been regenerated following polyethylene glycol mediated fusion of leaf mesophyll protoplasts from tomato and protoplasts from Lycopersicon pennellii callus. Three different cultivars of tomato were used as sources of protoplasts: Early Girl, Manapal, and UC82B. Fusions were performed between protoplasts of these tomato cultivars and protoplasts of L. pennellii, and between protoplasts of the cultivars and protoplasts of L. pennellii that had been exposed to 3 or 6 krads of gamma radiation. Somatic hybrid plants were identified on the basis of heterozygous isozyme banding patterns, and leaf and flower morphology. Somatic hybrid plants were regenerated following fusion of tomato protoplasts with either untreated or irradiated L. pennellii protoplasts. All were heterozygous for isozyme loci on five different chromosomes. Regenerated somatic hybrids showed inheritance of either or both parental chloroplast genomes, but predominantly the L. pennellii mitochondrial genome. The regenerated somatic hybrid plants exhibited reduced fertility, less than 20% viable pollen. A total of 34 somatic hybrid calli were identified. Of these, 21 regenerated shoots, and 7 produced seed following manual pollinations.  相似文献   

9.
Summary Interspecific hybrids between Brassica napus and B. oleracea are difficult to produce, and previous attempts to transfer economic characters from one species to the other have largely been unsuccessful. In these studies, oilseed rape cv. Tower (2n38) (B. napus) was crossed with broccoli and kale (2n18) (B. oleracea), and hybrid plants were developed from embryos in culture by either organogenesis or somatic embryogenesis. In rape × broccoli, F1 plants were regenerated from hybrid embryos and the plants produced viable selfed seeds. F5 plants (2n38) homozygous for white flower colour were selected for high oil content (47%) and Line 15; a selection from these plants produced fertile hybrids with rape, broccoli and kale without embryo culture. In reciprocal crosses between oilseed rape cv. Tower and an aphid resistant diploid kale, 28 and 56 chromosome F1 hybrid plants were regenerated from somatic embryos. The 56 chromosome plants were self-fertile and it was concluded from F2 segregation ratios that a single dominant gene controls resistance to cabbage aphid in kale. The 28 chromosome F1's were self-sterile, but these and the 56 chromosome F1's could be backcrossed to rape and kale. A cross between the F1 (2n56) and a forage rape resulted in the selection of a cabbage aphid (Brevicoryne brassicae L.) resistant line (Line 3). Both Line 15 and Line 3 can serve as bridges for gene interchange between B. campestris, B. napus and B. oleracea, which has not been possible hitherto. Hybridisations between rape and tetraploid kale produced F1 plants with 37 chromosomes. One F2 plant possessed coronal scales and the inheritance was shown to be controlled by a single recessive gene unlinked to petal colour.This paper is dedicated to Mr. T. P. Palmer, a colleague and close friend who retired from the DSIR as Assistant Director of the Crop Research Division in September 1984  相似文献   

10.
Polyploidization is an important speciation mechanism for all eukaryotes, and it has profound impacts on biodiversity dynamics and ecosystem functioning. Green fluorescent protein (GFP) has been used as an effective marker to visually screen somatic hybrids at an early stage in protoplast fusion. We have previously reported that the intensity of GFP fluorescence of regenerated embryoids was also an early indicator of ploidy level. However, little is known concerning the effects of ploidy increase on the GFP expression in citrus somatic hybrids at the plant level. Herein, allotetraploid and diploid cybrid plants with enhanced GFP (EGFP) expression were regenerated from the fusion of embryogenic callus protoplasts from ‘Murcott’ tangor (Citrus reticulata Blanco × Citrus sinensis (L.) Osbeck) and mesophyll protoplasts from transgenic ‘Valencia’ orange (C. sinensis (L.) Osbeck) expressing the EGFP gene, via electrofusion. Subsequent simple sequence repeat (SSR), chloroplast simple sequence repeat and cleaved amplified polymorphic sequence analysis revealed that the two regenerated tetraploid plants were true allotetraploid somatic hybrids possessing nuclear genomic DNA of both parents and cytoplasmic DNA from the callus parent, while the five regenerated diploid plants were cybrids containing nuclear DNA of the leaf parent and with complex segregation of cytoplasmic DNA. Furthermore, EGFP expression was compared in cells and protoplasts from mature leaves of these diploid cybrids and allotetraploid somatic hybrids. Results showed that the intensity of GFP fluorescence per cell or protoplast in diploid was generally brighter than in allotetraploid. Moreover, same hybridization signal was detected on allotetraploid and diploid plants by Southern blot analysis. By real-time RT-PCR and Western blot analysis, GFP expression level of the diploid cybrid was revealed significantly higher than that of the allotetraploid somatic hybrid. These results suggest that ploidy level conversion can affect transgene expression and citrus diploid cybrid and allotetraploid somatic hybrid represents another example of gene regulation coupled to ploidy.  相似文献   

11.
In order to obtain male-sterile asymmetric somatic hybrids between chicory (Cichorium intybus L.) and a sunflower (Helianthus annuus L.) male-sterile cytoplasmic line, mesophyll chicory protoplasts inactivated with iodoacetic acid and hypocotyl sunflower protoplasts irradiated with γ-rays have been fused, using PEG and applying two different procedures. Thirty three plants were regenerated from putative hybrid calli. A cytological analysis of their root-tip cells indicated that most of them had 18 chromosomes, the same number as chicory. Through Southern hybridisation on total DNA using the maize mitochondrial specific gene probes Cox I, Cox II and Cob, three plants were identified as cytoplasmic asymmetric hybrids, as shown by hybridisation bands specific for both chicory and sunflower. One of the regenerated plants produced a novel pattern of hybridisation that was not detected in either parent. When hybridisation of total DNA was carried out with an atpA mitochondrial gene probe the same three cybrids presented both the fertile chicory fragment and the male-sterile sunflower fragment. Finally, Southern hybridisation with an ORF 522 probe, which in sunflower is co-transcribed with the atpA gene, confirmed the hybrid nature of the three plants. The morphology of the cybrids resembled the parental chicory phenotype, and at anthesis their anthers produced fewer pollen grains which could not germinate either ”in vitro” or ”in situ.” Cybrid plants grown in the field produced seeds when free-pollination occurred. Received: 26 April 2000 / Accepted: 28 August 2000  相似文献   

12.
Protoplasts of Bupleurum scorzonerifolium irradiated with 380 μW/cm2 UV for 5 min were fused by the PEG-mediated method with untreated protoplasts of Arabidopsis thaliana. The fusion products were cultured in the P5 liquid medium for single hybrid cell clone formation. As a total, 81 independent putative hybrid clones (cell lines) were obtained, and seventeen of them were identified as somatic hybrids by chromosome counting, GISH, RAPD, and SSR analyses. More than 80 B. scorzonerifolium-like green introgressed plants and leaves were regenerated from 49 somatic hybrid cell lines, which contained chromatin and DNA characteristic of A. thaliana. To assess the UV tolerance of both parents with chromatin exclusion and introgression, their protoplasts were UV-irradiated (380 μW/cm2 for 0 and 5 min), and the protoplasts of A. thaliana were more sensitive to UV than those of B. scorzonerifolium as judged by Single Cell Gel Electrophoresis analysis. The possible relationship between UV resistance of B. scorzonerifolium and A. thaliana chromosome elimination and the formation of somatic introgressed hybrid plants is discussed.  相似文献   

13.
Camelina sativa, a wild relative of Brassica crops, is virtually immune to blackspot disease caused by Alternaria brassicicola. Intertribal somatic hybrids were produced between C. sativa and rapid-cycling Brassica oleracea as a step toward the transfer of resistance to this disease into Brassica vegetable crops. The plants recovered were confirmed as somatic hybrids by flow cytometry and RAPD analysis. All hybrids showed a morphology intermediate between the two parents. Rooted plants grew in soil up to 4–5 weeks, and some produced sterile flowers. Two of three hybrids tested showed a high level of resistance to  A. brassicicola. Resistance was correlated with the induction of high levels of the phytoalexin camalexin 48 h after inoculation, as in the resistant Camelina fusion partner. In contrast, susceptible somatic hybrids produced much lower levels of camalexin. Received: 2 April 1998 / Accepted: 14 July 1998  相似文献   

14.
Protoplasts of a kanamycin-resistant (KR, nuclear genome), streptomycin-resistant (SR, chloroplast genome) and chlorophyll-deficient (A1, nuclear genome) Nicotiana tabacum (KR-SA) cell suspension cultures or X-ray-irradiated mesophyll protoplasts of kanamycin- and streptomycin-resistant green plants (KR-SR) were fused with protoplasts of a cytoplasmic male-sterile (CMS) Daucus carota L. cell suspension cultures by electrofusion. Somatic hybrid plants were selected for kanamycin resistance and the ability to produce chlorophyll. Most of the regenerated plants had a normal D. carota morphology. Callus induced from these plants possessed 23–32 chromosomes, a number lower than the combined chromosome number (66) of the parents, and were resistant to kanamycin, but they segregated for streptomycin resistance, which indicated that N. tabacum chloroplasts had been eliminated. Genomic DNA from several regenerated plants was analyzed by Southern hybridization for the presence of the neomycin phosphotransferase gene (NPTII); all of the plants analyzed were found to contain this gene. Mitochondrial (mt) DNA was analyzed by Southern hybridization of restriction endonuclease digests of mtDNA with two DNA probes, PKT5 and coxII. The results showed that the two plants analyzed possessed the mitochondria of D. carota. These results demonstrate that the regenerated plants are interfamilial somatic hybrids.  相似文献   

15.
Non-embryogenic protoplasts of Medicago rugosa and M. scutellata were electro-fused with iodoacetic acid-treated protoplasts of M. sativa (alfalfa). Putative somatic hybrid callus were obtained and some plants regenerated from both combinations. Hybridity of regenerants was confirmed by morphology, molecular means and cytological observations. Parental specific bands were recognized in somatic hybrids by Southern analysis. The somatic hybrids were perennial and their morphology was similar to M. sativa. Cytological observations were carried out on the somatic hybrids, their vegetative clones and self-pollinated offspring. Original somatic hybrids were aneuploids (2n=31–59), but during vegetative proliferation, their chromosome numbers reduced to 32. Those clones of hybrids formed seeds from M. sativa (+) M. rugosa by self-crossing. Chromosomal rearrangements within the parental genomes were observed in vegetative clones of hybrids and their S1 offspring by Genomic in situ Hybridization (GISH). Some of S1 offspring from M. sativa (+) M. rugosa showed better spring growth than parental M. sativa and tend to be tolerant to Alfalfa weevil. It was considered that these traits were introduced from the genome transferring M.␣rugosa chromosome to M. sativa. The cell fusion may still have a potential in transferring alien chromosomes in order to increase the genetic variation for crop breeding.  相似文献   

16.
Summary With the idea to develop a selection system for asymmetric somatic hybrids between oilseed rape (Brassica napus) and black mustard (B. nigra), the marker gene hygromycin resistance was introduced in this last species by protoplast transformation with the disarmed Agrobacterium tumefaciens strain C58 pGV 3850 HPT. The B. nigra lines used for transformation had been previously selected for resistance to two important rape pathogens (Phoma lingam, Plasmodiophora brassicae). Asymmetric somatic hybrids were obtained through fusion of X-ray irradiated (mitotically inactivated) B. nigra protoplasts from transformed lines as donor with intact protoplasts of B. napus, using the hygromycin resistance as selection marker for fusion products. The somatic hybrids hitherto obtained expressed both hygromycin phosphotransferase and nopaline synthase genes. Previous experience with other plant species had demonstrated that besides the T-DNA, other genes of the donor genome can be co-transferred. In this way, the produced hybrids constitute a valuable material for studying the possibility to transfer agronomically relevant characters — in our case, diseases resistances — through asymmetric protoplast fusion.  相似文献   

17.
In 1975, tests with UK populations of Plasmodiophora brassicae not only revealed a lack of effective clubroot resistance in swedes (Brassica napus), but also the outstanding resistance of the European Clubroot Differential (ECD)04 (B. rapa). It was, therefore, decided to transfer the resistance genes from ECD04 to swedes, using the most pathogenic UK population of clubroot (C56) available for screening purposes. An autotetraploid form of ECD04 was crossed with tetraploid kale (B. oleracea) using the latter as female parent. One of the euploid, 2n = 38, hybrids secured by embryo rescue in 1976 was crossed to the swede cultivars Marian and Ruta Øtofte. Three further backcrosses of clubroot resistant plants to lines derived from modern swede cultivars were made over the period 1980 to 1982. Selfing commenced in 1983 to produce F2 populations. From F3 to F5 there was family selection for yield and agronomic characters, as well as single plant selection for clubroot resistance. In 1991, the six most promising F5 families were multiplied for subsequent evaluation in replicated yield trials in Dundee. The most promising family entered official trials at the beginning of 1993 and, 2 years later, was added to the National List as cv. Invitation and granted Plant Breeders' Rights. The first certified seed was sold in 1996, 20 years after the original synthetic B. napus was produced. The breeding programme provided evidence for only one of the three postulated dominant genes in ECD04 being required for resistance to C56 and also good evidence of differential resistance from tests with other clubroot populations. Hence, whilst the differential resistance in cv. Invitation should prove useful in the UK in the immediate future, it may not be durable in the longer term. It is, therefore, argued that the next and more difficult goal to achieve should be to introduce high levels of non-differential resistance from B. oleracea.  相似文献   

18.
Interspecific somatic hybrid plants were obtained by symmetrical electrofusion of mesophyll protoplasts of Medicago sativa with callus protoplasts of Medicago arborea. Somatic hybrid calli were picked manually from semi-solid culture medium after they were identified by their dual color in fluorescent light. Twelve putative hybrid calli were selected and one of them regenerated plants. The morphogenesis of the somatic hybrid calli was induced by the synthetic growth regulator 1,2 benzisoxazole-3-acetic acid. Somatic hybrid plants showed intensive genome rearrangements, as evidenced by isozyme and RFLP analysis. The morphology of somatic hybrid plants was in general intermediate between the parents. The production of hybrids by protoplast fusion between sexually incompatible Medicago species is related to the in vitro respon siveness of the parental protoplasts. The possibility of using somatic hybrid plants in alfalfa breeding is discussed.  相似文献   

19.
Plant regeneration was obtained from cultured anthers and hypocotyl segments of caraway (Carum carvi L.). Microspore- and somatic tissue-derived embryos were compared by observation of the regeneration process under identical induction conditions. Fluorescent microscopy with DAPI staining showed initiation of cell divisions and formation of embryogenic callus and somatic embryos from anther sacs, with production of embryos of both microspore and somatic origin. Induction of somatic embryos from hypocotyl-derived callus was also demonstrated. Isozyme native polyacrylamide gel electrophoresis was used to identify haploids and doubled haploids, and to determine the frequency of spontaneous diploidization of regenerated plants of microspore origin. Donor plants (2n = 20) and their anther-derived derivative plants (n = 10, 2n = 20, 4n = 40) in callus stage or leafy rosette stage were compared. The esterase (EST) band patterns of regenerated plants differed from the heterozygous parental material, suggesting that the regenerated plants were microspore-derived haploid/doubled haploid plants. The similar profile of EST bands between the diploid anther-derived plants and a sample of the donor plants corresponded to a somatic regeneration pathway. Although the selected induction conditions revealed no preference for induction of microspore embryogenesis, the anther culture protocol established for caraway utilizing isozyme segregating EST loci markers is suitable for DH production.  相似文献   

20.
Asymmetric intergeneric hybrid plants were obtained through protoplast fusion between Orychophragmus violaceus (L.) O.E. Schulz and Lesquerella fendleri (Gray) Wats. The latter carried chloroplasts transformed with the fused aadA16gfp gene construct, conferring streptomycin–spectinomycin resistance and UV-induced green fluorescence. The somatic hybrids were selected using the properties of spectinomycin-induced plastid defects in “albino” O. violaceus plants (chloroplast recipient) combined with the γ-irradiation-induced inactivation of nuclei in plastid donor L. fendleri. The morphology and esterase isozyme pattern of the hybrid plant as well as the results of the PCR analysis of internal transcribed spacer of nuclear ribosomal DNA proved that the regenerated hybrids carried O. violaceus nuclei, while PCR amplification of the atpB– rbcL spacer and aadA16gfp gene fragments confirmed the presence of the transformed L. fendleri chloroplasts in these plants. Expression of the fused aadA16gfp gene construct was confirmed by sodium dodecylsulfate–polyacrylamide gel electrophoresis analysis and the resistance of the obtained plants to both streptomycin and spectinomycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号