首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Several enzymes that were originally characterized to have one defined function in intermediatory metabolism are now shown to participate in a number of other cellular processes. Multifunctional proteins may be crucial for building of the highly complex networks that maintain the function and structure in the eukaryotic cell possessing a relatively low number of protein-encoding genes. One facet of this phenomenon, on which I will focus in this review, is the interaction of metabolic enzymes with RNA. The list of such enzymes known to be associated with RNA is constantly expanding, but the most intriguing question remains unanswered: are the metabolic enzyme-RNA interactions relevant in the regulation of cell metabolism? It has been proposed that metabolic RNA-binding enzymes participate in general regulatory circuits linking a metabolic function to a regulatory mechanism, similar to the situation of the metabolic enzyme aconitase, which also functions as iron-responsive RNA-binding regulatory element. However, some authors have cautioned that some of such enzymes may merely represent "molecular fossils" of the transition from an RNA to a protein world and that the RNA-binding properties may not have a functional significance. Here I will describe enzymes that have been shown to interact with RNA (in several cases a newly discovered RNA-binding protein has been identified as a well-known metabolic enzyme) and particularly point out those whose ability to interact with RNA seems to have a proven physiological significance. I will also try to depict the molecular switch between an enzyme's metabolic and regulatory functions in cases where such a mechanism has been elucidated. For most of these enzymes relations between their enzymatic functions and RNA metabolism are unclear or seem not to exist. All these enzymes are ancient, as judged by their wide distribution, and participate in fundamental biochemical pathways.  相似文献   

3.
RNA provides the framework for the assembly of some of the most intricate macromolecular complexes within the cell, including the spliceosome and the mature ribosome. The assembly of these complexes relies on the coordinated association of RNA with hundreds of trans-acting protein factors. While some of these trans-acting factors are RNA-binding proteins (RBPs), others are adaptor proteins, and others still, function as both. Defects in the assembly of these complexes results in a number of human pathologies including neurodegeneration and cancer. Here, we demonstrate that Silencing Defective 2 (SDE2) is both an RNA binding protein and also a trans-acting adaptor protein that functions to regulate RNA splicing and ribosome biogenesis. SDE2 depletion leads to widespread changes in alternative splicing, defects in ribosome biogenesis and ultimately complete loss of cell viability. Our data highlight SDE2 as a previously uncharacterized essential gene required for the assembly and maturation of the complexes that carry out two of the most fundamental processes in mammalian cells.  相似文献   

4.
5.
非编码RNA与基因表达调控   总被引:1,自引:0,他引:1  
近年来,随着对基因组的深入研究,发现真核生物中存在许多形态和功能各异的非编码RNA分子,这类RNA分子并不表达蛋白质,但它们在基因转录水平、转录后水平及翻译水平起了重要的调控作用。具有调控作用的RNA分子种类非常丰富,如长链非编码RNA(long non-coding RNA,lncRNA)、miRNA、PIWI相互作用RNA(PIWI-interacting RNA,piRNA)、内源性小干扰RNA(endogenous small interfering RNA,endo-siRNA)、竞争性内源RNA(competitive endogenous RNA,ceRNA)等,它们使基因表达过程更为丰富、严谨和有序。本文综述几类典型的非编码RNA对基因表达的调节作用,以助于理解细胞中RNA分子调节网络的功能和机制。  相似文献   

6.
7.
8.
9.
10.
11.
Influenza A virus subtype H5N1 is highly contagious among birds, causing high mortality among domestic poultry. The viral genome is contained on eight single RNA strands of which HA encode the antigenic glycoprotein called hemagglutinin. Hemagglutinin found on the surface of the influenza viruses and is responsible for binding the virus to the cell that is being infected. Among the most prevalent RNA structures the pseudoknot motif represents an important piece of RNA architecture, as it provides a means for a single RNA strand to fold upon itself to produce a globular structure capable of performing important biological functions. In this analysis we have identified the pseudoknot motifs in the hemagglutinin gene of HPAI A (H5N1) Asian strains. Specific aptamers have been designed against these pseudoknots. These in-silico aptamers can be used to hinder the ability of pseudoknots to facilitate ribosomal frameshifting. This may ultimately lead to reduce the coding efficiency of the HA that encodes hemagglutinin and might be used as molecular medicine for H5N1.  相似文献   

12.
The complexity and abundance of Epstein-Barr (EBV)-specific RNA in cell cultures restringently, abortively, and productively infected with EBV has been analyed by hybridization of the infected cell RNA with purified viral DNA. The data indicate the following. (i) Cultures containing productively infected cells contain viral RNA encoded by at least 45% of EBV DNA, and almost all of the species of viral RNA are present in the polyadenylated and polyribosomal RNA fractions. (ii) Restringently infected Namalwa and Raji cultures, which contain only intranuclear antigen, EBNA, and enhanced capacity for growth in vitro, contain EBV RNA encoded by at least 16 and 30% of the EBV DNA, respectively. The polyadenylated and polyribosomal RNA fractions of Raji and Namalwa cells are enriched for a class of EBV RNA encoded by approximately 5% of EBV DNA. The same EBV DNA sequences encode the polyadenylated and polyribosomal RNA of both Raji and Namalwa cells. (iii) After superinfection of Raji cultures with EBV (HR-1), the abortively infected cells contain RNA encoded by at least 41% of EBV DNA. The polyadenylated RNA of superinfected Raji cells is enriched for a class of EBV RNA encoded by approximately 20% of EBV HR-1 DNA. Summation hybridization experiments suggest that the polyadenylated RNA in superinfected Raji cells is encoded by the same DNA sequences as encode RNA present in Raji cells before superinfection, most of which is not polyadenylated. That the same EBV RNA sequences are present in the polyadenylated and polyribosomal fractions of two independently derived, restringently infected cell lines suggests that these RNAs may specify functions related to maintenance of the transformed state. The complexity of this class of RNA is adequate to specify a sequence of a least 5,000 amino acids. That only some RNA species are polyadenylated in restringent and abortive infection suggests that polyadenylation or whatever determines polyadenylation may play a role in the restricted expression of the EVB genome.  相似文献   

13.
Wu M  Yu Z  Fan J  Caron A  Whiteway M  Shen SH 《FEBS letters》2006,580(13):3246-3256
Calpains are a family of calcium-dependent cysteine proteases involved in a variety of cellular functions. Two isoforms, m-calpain and mu-calpain, have been implicated in cell migration. However, since conventional inhibitors used for the studies of the functions of these enzymes lack specificity, the individual physiological function and biochemical mechanism of these two isoforms, especially mu-calpain, are not clear. In contrast, RNA interference has the potential to allow a sequence-specific destruction of target RNA for functional assay of gene of interest. In the present study, we found that small interfering RNAs-mediated knockdown of mu-calpain expression in MCF-7 cells that do not express m-Calpain led to a reduction of cell migration. This isoform-specific function of mu-calpain was further confirmed by the rescue experiment as overexpression of mu-calpain but not m-calpain could restore the cell migration rate. Knockdown of mu-calpain also altered cell morphology with increased filopodial projections and a highly elongated tail that seemed to prevent cell spreading and migration with reduced rear detachment ability. Furthermore, knockdown of mu-calpain decreased the proteolytic products of filamin and talin, which were specifically rescued by overexpression of mu-calpain but not m-calpain, suggesting that their proteolysis could be one of the key mechanisms by which mu-calpain regulates cell migration.  相似文献   

14.
Regulation of gene expression and the transcription factor cycle hypothesis   总被引:1,自引:0,他引:1  
Scherrer K 《Biochimie》2012,94(4):1057-1068
  相似文献   

15.
The study of messenger RNA in mammalian cells by Northern analysis requires the extraction of intact RNA in pure form. Although a number of reliable techniques have been developed for the purpose, most are fairly complex, involving steps such as ultracentrifugation and multiple extractions with large volumes of phenol and chloroform. When the number of cell samples to be analyzed is large, these techniques can be unwieldy. I now describe an RNA purification procedure which is simple enough to allow handling of a large number of cultured cell samples. It uses safe and inexpensive reagents and produces a high yield of pure total cell RNA, essentially free of DNA and ribonuclease, suitable for Northern analysis. The procedure also allows extraction of intact RNA from human granulocytes, cells which are rich in ribonuclease and contain very low amounts of RNA.  相似文献   

16.
Keiler KC  Ramadoss NS 《Biochimie》2011,93(11):1993-1997
Transfer-messenger RNA (tmRNA) is a bifunctional RNA that has properties of a tRNA and an mRNA. tmRNA uses these two functions to release ribosomes stalled during translation and target the nascent polypeptides for degradation. This concerted reaction, known as trans-translation, contributes to translational quality control and regulation of gene expression in bacteria. tmRNA is conserved throughout bacteria, and is one of the most abundant RNAs in the cell, suggesting that trans-translation is of fundamental importance for bacterial fitness. Mutants lacking tmRNA activity typically have severe phenotypes, including defects in viability, virulence, and responses to environmental stresses.  相似文献   

17.
Mature human dendritic cells (mDCs) are the most powerful APCs known today, having the unique ability to induce primary immune responses. One of the best known surface markers for mDCs is the glycoprotein CD83, which is strongly up-regulated during maturation, together with costimulatory molecules such as CD80 and CD86. When CD83 surface expression was inhibited by interference with the messenger RNA export or by infection with certain viruses, DCs showed a dramatically reduced capability to induce T cell proliferation. However, in these cases side effects on other cellular functions cannot be excluded completely. In this study we present an efficient method to specifically influence CD83 surface expression by the use of RNA interference. We used small-interfering RNA targeted against CD83 and carefully evaluated an electroporation protocol for the delivery of the duplex into the cells. Furthermore, we identified freshly prepared immature DCs as the best target for the application of a CD83 knockdown and we were also able to achieve a long lasting silencing effect for this molecule. Finally, we were able to confirm that CD83 functions as an enhancer during the stimulation of T cells, significantly increases DC-mediated T cell proliferation, and goes hand in hand with clear changes in cytokine expression during T cell priming. These results were obtained for the first time without the use of agents that might cause unwanted side effects, such as low m.w. inhibitors or viruses. Therefore, this method presents a suitable way to influence DC biology.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号