首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Much of the crop residues, including cereal straw, that are produced worldwide are lost by burning. Plant residues, and in particular straw, contain large amounts of carbon (cellulose and hemicellulose) which can serve as substrates for the production of microbial biomass and for biological N2 fixation by a range of free-living, diazotrophic bacteria. Microorganisms with the dual ability to utilise cellulose and fix N2 are rate, but some strains that utilize hemicellulose and fix N2 have been found. Generally, cellulolysis and diazotrophy are carried out by a mixed microbial community in which N2-fixing bacteria utilise cellobiose and glucose produced from straw by cellulolytic microorganisms. N2-fixing bacteria include heterotrophic and phototrophic organisms and the latter are apparently more prominent in flooded soils such as rice paddies than in dryland soils. The relative contributions of N2 fixed by heterotrophic diazotrophic bacteria compared with cyanobacteria and other phototrophic bacteria depend on the availability of substrates from straw decomposition and on environmental pressures. Measurements of asymbiotic N2 fixation are limited and variable but, in rice paddy systems, rates of 25 kg N ha-1 over 30 days have been found, whereas in dryland systems with wheat straw, in situ measurements have indicated up to 12 kg N ha-1 over 22 days. Straw-associated N2 fixation is directly affected by environmental factors such as temperature, moisture, oxygen concentration, soil pH and clay content as well as farm management practices. Modification of managements and use of inoculants offer ways of improving asymbiotic N2 fixation.In laboratory culture systems, inoculation of straws with cellulolytic and diazotrophic microorganisms has resulted in significant increases in N2 fixation in comparison to uninoculated controls and gains of N of up to 72 mg N fixed g-1 straw consumed have been obtained, indicating the potential of inoculation to improve N gains in composts that can then be used as biofertilisers. Soils, on the other hand, contain established, indigenous microbial populations which tend to exclude inoculant microorganisms by competition. As a consequence, improvements in straw-associated N2 fixation in soils have been achieved mostly by specific straw-management practices which encourage microbial activity by straw-decomposing and N2-fixing microorganisms.Further research is needed to quantify more accurately the contribution of asymbiotic N2 fixation to cropping systems. New strains of inoculants, including those capable of both cellulolytic and N2-fixing activity, are needed to improve the N content of biofertilisers produced from composts. Developments of management practices in farming systems may result in further improvements in N2 fixation in the field.  相似文献   

2.
The effect of the herbicide glyphosate ( N -(phosphonomethyl)glycine) on the growth, respiration and nitrogen fixation of Azotobacter chroococcum and A. vinelandii was studied. Azotobacter vinelandii was more sensitive to glyphosate toxicity than A. chroococcum. Recommended dosages of glyphosate did not affect growth rates. More than 4 kg ha-1 is needed to find some inhibitory effect. Specific respiration rates were 19.17 mmol O2 h-1 g-1 dry weight for A. chroococcum and 12.09 mmol h-1 g-1 for A. vinelandii. When 20 kg ha-1 was used with A. vinelandii , respiration rates were inhibited 60%, the similar percentage inhibition A. chroococcum showed at 28 kg ha-1. Nitrogen fixation dropped drastically 80% with 20 kg ha-1 in A. vinelandii and 98% with 28 kg ha-1 in A. chroococcum. Cell size as determined by electron microscopy decreased in the presence of glyphosate, probably because glyphosate induces amino acid depletion and reduces or stops protein synthesis.  相似文献   

3.
4.
In acetate-limited chemostat cultures of Acinetobacter johnsonii 210A at a dilution rate of 0.1 h−1 the polyphosphate content of the cells increased from 13% to 24% of the biomass dry weight by glucose (100 mM), which was only oxidized to gluconic acid. At this dilution rate, only about 17% of the energy from glucose oxidation was calculated to be used for polyphosphate synthesis, the remaining 83% being used for biomass formation. Suspensions of non-growing, phosphate-deficient cells had a six- to tenfold increased uptake rate of phosphate and accumulated polyphosphate aerobically up to 53% of the biomass dry weight when supplied with only orthophosphate and Mg2+. The initial polyphosphate synthesis rate was 98 ± 17 nmol phosphate min−1 mg protein−1. Intracellular poly-β-hydroxybutyrate and lipids served as energy sources for the active uptake of phosphate and its subsequent sequestration to polyphosphate. The H+-ATPase inhibitor N,N′-dicyclohexylcarbodiimide caused low ATP levels and a severe inhibition of polyphosphate formation, suggesting the involvement of polyphosphate kinase in polyphosphate synthesis. It is concluded that, in A. johnsonii 210A, (i) polyphosphate is accumulated as the energy supply is in excess of that required for biosynthesis, (ii) not only intracellular poly-β-hydroxybutyrate but also neutral lipids can serve as an energy source for polyphosphate-kinase-mediated polyphosphate formation, (iii) phosphate-deficient cells may accumulate as much polyphosphate as activated sludges and recombinants of Escherichia coli designed for polyphosphate accumulation. Received: 23 October 1998 / Received revision: 18 January 1999 / Accepted: 22 January 1999  相似文献   

5.
Bergerou  J.A.  Gentry  L.E.  David  M.B.  Below  F.E. 《Plant and Soil》2004,262(1-2):383-394
Many studies have shown that maize (Zea mays L.) requires less fertilizer N for optimum yield when grown in rotation with soybean [Glycine max (L.) Merr] than when grown in monoculture, which is referred to as the `soybean N credit' in the maize growing areas of the United States. Because the specific source of this soybean N credit is unclear, our objective was to determine the role of nodules and N2 fixation as a contributing source of the soybean N credit. Our research approach was designed to separate the effect of symbiotic N2 fixation from other rotational effects, as the treatments included: maize grown after nodulated (N2 fixing) soybean and maize grown after non-nodulated (non N2 fixing) soybean. A separate experiment examined maize grown after maize. For each previous crop, maize was grown the following year with varying rates of fertilizer applied N. In both years, the yield differences between nodulated and non-nodulated soybean as the previous crop were much smaller than the apparent yield decrease associated with continuous maize. Although small in magnitude, maize following non-nodulated soybean accumulated less total N, was paler in leaf color, and yielded less than maize following nodulated soybean in the more favorable year of 1999, while most of these differences were not observed in 2000. These findings indicate that soybean nodules and N2 fixation, while having a certain role, are not the major determinants of the soybean N credit.  相似文献   

6.
A method has been set up for the experimental determinationof the volume coefficient for light absorption in vivo by aquaticheterotrophic bacteria. The application described here is theabsorption measurement of the bacterial fraction that passesthrough the commonly used GF/F ifiter and remains unaccountedfor. The experimental samples were prepared by successive waterfiltra tions through GF/F and 0.22 µm Millipore membranes.Light-transmission and light-reflection measurements of thefilter-retained samples were performed using a dual-beam spectrophotometerequipped with an integrating sphere attachment. Sample absorptionwas derived from the data by a procedure that corrects for thecontamination of the results due to the high degree of lightscattering by the bacteria. The bacterial absorption was discriminatedfrom fine detritus absorption by bleaching the bacterial respiratorypigments using a K2S2O8 solution. The absorption amplificationcaused by multiple scattering in the filter was corrected forby an expression that was obtained experimentally. A test ofthe method, including error analysis, was performed on samplescollected in both marine and inland waters. The relative contributionsto light absorption by heterotrophic bacteria and various typesof particulate matter were also measured for a typical situation.Combining the measured volume absorption coefficients with backscatteringcoefficients computed by Mie theory yields a set of input datato multicomponent optical models that is needed to assess thecontribution of these heterotrophic bacteria to the radiativetransfer process.  相似文献   

7.
With the increase in industrial and agricultural activities, a large amount of nitrogenous compounds are released into the environment, leading to nitrate pollution. The perilous effects of nitrate present in the environment pose a major threat to human and animal health. Bioremediation provides a cost-effective and environmental friendly method to deal with this problem. The process of aerobic denitrification can reduce nitrate compounds to harmless dinitrogen gas. This review provides a brief view of the exhaustive role played by aerobic denitrifiers for tackling nitrate pollution under different ecological niches and their dependency on various environmental parameters. It also provides an understanding of the enzymes involved in aerobic denitrification. The role of aerobic denitrification to solve the issues faced by the conventional method (aerobic nitrification–anaerobic denitrification) in treating nitrogen-polluted wastewaters is elaborated.  相似文献   

8.
9.
New procedures have been developed for the isolation and purification of aerobic and facultatively anaerobic bacteria able to utilize cellulose as sole source of carbon and energy. Wood pulp medium was used for enrichment, and bacterial cellulose, obtained from cultures of Acetobacter aceti subsp. xylinus , was employed as carbon substrate during purification and for the rapid screening of colonies for cellulolytic activity. The methods have revealed several new groups of Gram negative cellulose-degrading bacteria, including organisms that form differentiated colonies superficially similar to myxobacterial sori. The organisms formed several phenetic clusters, three of which contained reference strains of Cellvibrio fulvus, Pseudomonas fluorescens var. cellulosa and Cytophaga hutchinsonii . No cellulose degrading cluster included non-cellulose degrading strains. Most of the cellulose degraders studied were flagellated and, of these, the majority had polar or lophotrichous flagella, although one cluster included peritrichously flagellated organisms. The cellulose degraders in this study included five organisms that grew on nitrate-free medium; these appeared in two different clusters. A few Gram positive isolates appeared to belong to the genera Streptomyces and Thermoactinomyces .  相似文献   

10.
The actual extracellular release of organic matter by algae was determined in water samples in which the heterotrophic activity of bacteria was inhibited by gentamycin. Gentamycin rapidly and efficiently inhibited the activity of aquatic bacteria without affecting phytoplankton metabolism. Aquatic bacteria utilized the products of algal extracellular release. The amount of algal photosynthetic products metabolized by bacteria can be taken as a measure of their heterotrophic activity in waters.  相似文献   

11.
Fungal biodiversity in freshwater, brackish and marine habitats was estimated based on reports in the literature. The taxonomic groups treated were those with species commonly found on submerged substrates in aquatic habitats: Ascomycetes (exclusive of yeasts), Basidiomycetes, Chytridiomycetes, and the non-fungal Saprolegniales in the Class Oomycetes. Based on presence/absence data for a large number and variety of aquatic habitats, about 3,000 fungal species and 138 saprolegnialean species have been reported from aquatic habitats. The greatest number of taxa comprise the Ascomycetes, including mitosporic taxa, and Chytridiomycetes. Taxa of Basidiomycetes are, for the most part, excluded from aquatic habitats. The greatest biodiversity for all groups occurs in temperate areas, followed by Asian tropical areas. This pattern may be an artifact of the location of most of the sampling effort. The least sampled geographic areas include Africa, Australia, China, South America and boreal and tropical regions worldwide. Some species overlap occurs among terrestrial and freshwater taxa but little species overlap occurs among freshwater and marine taxa. We predict that many species remain to be discovered in aquatic habitats given the few taxonomic specialists studying these fungi, the few substrate types studied intensively, and the vast geographical area not yet sampled.  相似文献   

12.
The joint effects of growth temperature, incubation temperature, and molybdenum concentration on the nitrogen fixation rate ofAnabaena cylindrica were determined using the acetylene-reduction technique. The nitrogen-fixation response to increased molybdenum concentration varied among three growth temperatures (15°, 23°, and 30° C). The pattern of rate change was similar within a growth temperature but increased overall in magnitude with the three incubation temperatures (also 15°, 23°, and 30° C). The maximum rate of nitrogen fixation occurred at 30°C regardless of previous growth temperature. The minimum molybdenum concentration necessary to yield substantial acetylene reduction varied with growth temperature: at 15°C, 15g 1–1 was effective; at 23°C, less than 5g 1–1 was effective; and at 30°C, 50g 1–1 was effective. At all three growth temperatures, increases in molybdenum concentration above the minimum effective concentration produced increases in acetylene reduction. However, at higher molybdenum concentrations inhibition of nitrogen fixation occurred.  相似文献   

13.
The study of the horizontal and vertical distribution of heterotrophic bacteria in brackish Lake Shira in summer periods showed that mesophilic bacteria dominated in all areas of the lake, whereas psychrotolerant bacteria dominated in the metalimnion and hypolimnion of its central part. Nonhalophilic bacteria were mostly mesophilic and dominated in coastal waters. Most psychrotolerant bacteria were able to grow in the presence of 5-10% NaCl. Heterotrophic bacteria isolated in different regions of the lake were identified to a generic level. The isolates were classified into autochthonous and allochthonous microorganisms on the bases of their distribution pattern in the lake water, halotolerance, and ability to grow at low temperatures.  相似文献   

14.
15.
16.
17.
Abstract The distribution of heterotrophic bacteria in polluted coastal and unpolluted pelagic seawaters was studied using a 14C-MPN method with either five of seven kinds of 14C-organic compounds as substrates. The total number of heterotrophic bacteria in pelagic waters ranged from 9.2 × 103 to 5.4. ¢ 104 cell/ml and more than 85% of the heterotrophic bacteria were represented by obligate oligotrophs. In coastal waters, the number of heterotrophs was one order of magnitude higher (av. 3.5 ¢ 105 cells/ml), and eutrophic and facultatively oligotrophic bacteria were predominant. Oligotrophs in pelagic waters had a high specificity for the utilization of amino acids, especially glycine, and acetate-utilizing bacteria were scarce. The in situ maximum uptake rates of glutamate and glycine were much higher than those of glycolate and acetate. Acetate uptake rates were extremely low or not detectable in pelagic waters. The specificity of uptake kinetics is assumed to depend on the existence of obligate oligotrophs as dominant bacteria in pelagic seawater.  相似文献   

18.
Eight mercury-resistant bacterial strains isolated from the Chesapeake Bay and one strain isolated from the Cayman Trench were examined for ability to volatilize mercury. Mercury volatilization was found to be variable in the strains tested. In addition, plasmids were detected in all strains. After curing, two of the bacterial strains lost mercury resistance, indicating that volatilization is plasmid mediated in these strains. Only two cultures demonstrated ability to methylate mercuric chloride under either aerobic or anaerobic conditions. Methylation of mercury, compared with volatilization, appears to be mediated by a separate genetic system in these bacteria. It is concluded that mercury volatilization in the estuarine environment can be mediated by genes carried on plasmids.  相似文献   

19.
Biodegradation experiments with radioactively labeled trichloroethylene showed that 32% of the radioactive carbon was converted to glyoxylic acid, dichloroacetic acid and trichloroacetic acid and that the same percentage was converted to CO2 and CO after 140 h of incubation by a pure culture of a type II methane-utilizing bacterium, Methylocystis sp. strain M, isolated from a mixed culture, MU-81, in our laboratory. In contrast, these water-soluble (14C)trichloroethylene degradation products were completely or partially degraded further and converted to CO2 by the MU-81 mixed culture. This phenomenon was attributed to the presence of a heterotrophic bacterium (strain DA4), which was identified as Xanthobacter autotrophicus, in the MU-81 culture. The results indicate that the heterotrophic bacteria play an important role in complete trichloroethylene degradation by methanotrophs.  相似文献   

20.
The occurrence of biochemical activities of the sulphur cycle was followed in isolates of heterotrophic bacteria from the fermentative horizon of a spruce stand, a grass-covered withered spruce stand and of mountain ash and birch stand in the area strongly influenced by sulphur immissions. The occurrence of bacteria capable of reducing S0 to S2−, oxidizing S0 and S2O3 2− to SO4 2− and solubilizing S0 increased in the above order. The occurrence of producers of thiosulphate sulphurtransferase (rhodanese), thiosulphate oxidase and sulphite oxidase increased and the level of the production of these enzymes increased as well. Heterotrophic bacteria (mostly pseudomonads) from the grass-covered stands exhibit more activities of the sulphur cycle than bacteria from the spruce stand without ground vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号