首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ca2+/calmodulin-dependent protein kinase (Ca2+/CaM kinase I), which phosphorylates site I of synapsin I, has been highly purified from bovine brain. The physical properties and substrate specificity of Ca2+/CaM kinase I were distinct from those of all other known Ca2+/CaM kinases. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the purified enzyme preparation consisted of two major polypeptides of Mr 37,000 and 39,000 and a minor polypeptide of Mr 42,000. In the presence of Ca2+ and calmodulin (CaM), all three polypeptides bound CaM, were autophosphorylated on threonine residues, and were labeled by the photoaffinity label 8-azido-ATP. Peptide maps of the three autophosphorylated polypeptides were very similar. The Stokes radius and the sedimentation coefficient of the enzyme were, respectively, 31.8 A and 3.25 s. A molecular weight of 42,400 and a frictional ratio of 1.38 were calculated from the above values, suggesting that Ca2+/CaM kinase I is a monomer. It is possible that the polypeptides of lower molecular weight are derived from the polypeptide of Mr 42,000 by proteolysis; alternatively, the polypeptides may represent isozymes of Ca2+/CaM kinase I. Synapsin I (site I) was the best substrate tested (Km, 2-4 microM) for Ca2+/CaM kinase I. Of many additional proteins tested, only protein III (a phosphoprotein related to synapsin I) and smooth muscle myosin light chain were phosphorylated. Ca2+/CaM kinase I was found in highest concentration in brain, where it showed widespread regional and subcellular distributions. In addition, the enzyme had a widespread and predominantly cytosolic tissue distribution. The widespread neuronal and tissue distribution of Ca2+/CaM kinase I suggests that other substrates might exist for this enzyme in both neuronal and non-neuronal tissues.  相似文献   

2.
Recent molecular cloning experiments have identified a 25 amino-acid region as the calmodulin-binding domain of the alpha-subunit of rat brain Ca2+/calmodulin-dependent multifunctional protein kinase II (CaM-K II). Synthetic peptides, derived from the deduced amino-acid sequence encompassing this region, were examined for their ability to bind calmodulin in a calcium dependent manner and to inhibit the Ca2+/calmodulin-dependent autophosphorylation of CaM-K II. Comparison of these structure-function relationships highlighted a region of 5 amino-acids, which was essential for calmodulin interaction and inhibition of kinase activity. This region demonstrated some homology with other calmodulin-binding peptides, and may represent a key site of interaction of the kinase with calmodulin. These analyses provide additional insight into the molecular mechanism underlying the Ca2+ regulation of CaM-K II.  相似文献   

3.
Multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) is a prominent mediator of neurotransmitters which elevate Ca2+. It coordinates cellular responses to external stimuli by phosphorylating proteins involved in neurotransmitter synthesis, neurotransmitter release, carbohydrate metabolism, ion flux and neuronal plasticity. Structure/function studies of CaM kinase have provided insights into how it decodes Ca2+ signals. The kinase is kept relatively inactive in its basal state by the presence of an autoinhibitory domain. Binding of Ca2+/calmodulin eliminates this inhibitory constraint and allows the kinase to phosphorylate its substrates, as well as itself. This autophosphorylation significantly slows dissociation of calmodulin, thereby trapping calmodulin even when Ca2+ levels are subthreshold. The kinase may respond particularly wel to multiple Ca2+ spikes since trapping may enable a spike frequency-dependent recruitment of calmodulin with each successive Ca2+ spike leading to increased activation of the kinase. Once calmodulin dissociates, CaM kinase remains partially active until it is dephosphorylated, providing for an additional period in which its response to brief Ca2+ transients is potentiated.Special issue dedicated to Dr. Paul Greengard.  相似文献   

4.
Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKPase) is a protein phosphatase which dephosphorylates autophosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) and deactivates the enzyme (Ishida, A., Kameshita, I. and Fujisawa, H. (1998) J. Biol. Chem. 273, 1904-1910). In this study, a phosphorylation-dephosphorylation relationship between CaMKII and CaMKPase was examined. CaMKPase was not significantly phosphorylated by CaMKII under the standard phosphorylation conditions but was phosphorylated in the presence of poly-L-lysine, which is a potent activator of CaMKPase. The maximal extent of the phosphorylation was about 1 mol of phosphate per mol of the enzyme and the phosphorylation resulted in an about 2-fold increase in the enzyme activity. Thus, the activity of CaMKPase appears to be regulated through phosphorylation by its target enzyme, CaMKII.  相似文献   

5.
Purified rat brain Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) is stimulated by brain gangliosides to a level of about 30% the activity obtained in the presence of Ca2+/calmodulin (CaM). Of the various gangliosides tested, GT1b was the most potent, giving half-maximal activation at 25 microM. Gangliosides GD1a and GM1 also gave activation, but asialo-GM1 was without effect. Activation was rapid and did not require calcium. The same gangliosides also stimulated the autophosphorylation of CaM-kinase II on serine residues, but did not produce the Ca2+-independent form of the kinase. Ganglioside stimulation of CaM-kinase II was also present in rat brain synaptic membrane fractions. Higher concentrations (125-250 microM) of GT1b, GD1a, and GM1 also inhibited CaM-kinase II activity. This inhibition appears to be substrate-directed, as the extent of inhibition is very dependent on the substrate used. The molecular mechanism of the stimulatory effect of gangliosides was further investigated using a synthetic peptide (CaMK 281-309), which contains the CaM-binding, inhibitory, and autophosphorylation domains of CaM-kinase II. Using purified brain CaM-kinase II in which these regulatory domains were removed by limited proteolysis. CaMK 281-309 strongly inhibited kinase activity (IC50 = 0.2 microM). GT1b completely reversed this inhibition, but did not stimulate phosphorylation of the peptide on threonine-286. These results demonstrate that GT1b can partially mimic the effects of Ca2+/CaM on native CaM-kinase II and on peptide CaMK 281-309.  相似文献   

6.
Ca(2+)/calmodulin-dependent protein kinase kinase (CaM-KK) is a novel member of the CaM kinase family, which specifically phosphorylates and activates CaM kinase I and IV. In this study, we characterized the CaM-binding peptide of alphaCaM-KK (residues 438-463), which suppressed the activity of constitutively active CaM-KK (84-434) in the absence of Ca(2+)/CaM but competitively with ATP. Truncation and site-directed mutagenesis of the CaM-binding region in CaM-KK reveal that Ile(441) is essential for autoinhibition of CaM-KK. Furthermore, CaM-KK chimera mutants containing the CaM-binding sequence of either myosin light chain kinases or CaM kinase II located C-terminal of Leu(440), exhibited enhanced Ca(2+)/CaM-independent activity (60% of total activity). Although the CaM-binding domains of myosin light chain kinases and CaM kinase II bind to the N- and C-terminal domains of CaM in the opposite orientation to CaM-KK (Osawa, M., Tokumitsu, H., Swindells, M. B., Kurihara, H., Orita, M., Shibanuma, T., Furuya, T., and Ikura, M. (1999) Nat. Struct. Biol. 6, 819-824), the chimeric CaM-KKs containing Ile(441) remained Ca(2+)/CaM-dependent. This result demonstrates that the orientation of the CaM binding is not critical for relief of CaM-KK autoinhibition. However, the requirement of Ile(441) for autoinhibition, which is located at the -3 position from the N-terminal anchoring residue (Trp(444)) to CaM, accounts for the opposite orientation of CaM binding of CaM-KK compared with other CaM kinases.  相似文献   

7.
A new Ca2+/calmodulin-dependent serine kinase was isolated from rat parotid gland acinar cells following chronic treatment with the beta-agonist isoproterenol. A single-step purification was performed on a calmodulin-agarose affinity column, following solubilization with Triton X-100. Among various substrates tested, bovine galactosyltransferase was the preferred substrate of the kinase, followed by glycogen synthetase greater than histone greater than phosphodiesterase greater than phenylalanine hydroxylase greater than phosphorylase b greater than bovine serum albumin. In comparison, a spleen preparation of Ca2+/calmodulin-dependent kinase did not show galactosyltransferase to be the preferred substrate. Thus, the enzyme would appear to be similar to the human galactosyltransferase-associated kinase. The kinase activity was saturable with 100 microM Ca2+ and 2 microM calmodulin. The molecular mass determined by nondenaturing and sodium dodecyl sulfate polyacrylamide gel electrophoreses was 75 kDa with a pI of 4.3. The Vmax was 3500 mumol/(min.mg protein) with a Km of 1.6 microM for the transferase substrate. Leukotriene C and prostaglandin E2 were found to be specific noncompetitive inhibitors of the rat galactosyltransferase-associated kinase.  相似文献   

8.
《FEBS letters》1987,219(1):249-253
Ca2+-dependent chromatography of soluble cytosolic proteins on calmodulin-Sepharose gave a fraction that exhibited Ca2+- and calmodulin-dependent phosphorylation of several polypeptides, including 60, 56 and 45 kDa species. At 0.2 μM beef calmodulin the phosphorylation was optimal at 3 μM free Ca2+, and at 80 μM free Ca2+ it was half-maximal at about 0.1 μM beef calmodulin. It is concluded that the fraction contains calmodulin-dependent protein kinase(s) which is (are) autophosphorylated or associated with substrates.  相似文献   

9.
Ca2+/calmodulin-dependent protein kinase II, an abundant brain protein proposed to mediate a number of Ca2+-regulated processes in neuronal tissue, is composed of autophosphorylatable subunits of Mr 50,000 and 60,000/58,000. A recent study (McGuinness, T. L., Lai, Y., Greengard, P., Woodgett, J.R., and Cohen, P. (1983) FEBS Lett. 163, 329-334) suggested that this kinase exists as isozymes which vary in the relative ratio of these subunits in different tissues or species. Other studies (Walaas, S. I., Nairn, A. C., and Greengard, P. (1983) J. Neurosci. 3, 291-301, 302-311) provided evidence which suggested that the ratio of these phosphopeptides might vary in different brain regions. In the present investigation, we have tested this possibility by comparing Ca2+/calmodulin-dependent protein kinase II purified from rat forebrain and cerebellum. The two kinases had similar purification characteristics, subunit compositions, physical properties, and substrate specificities. Gel filtration and sucrose density gradient centrifugation provided an estimated molecular weight of 550,000 for the forebrain kinase and 615,000 for the cerebellar kinase. The kinases from the two regions clearly differed in the relative proportions of the Mr 50,000 and 60,000/58,000 subunits. Three independent methods indicated that the forebrain kinase contained the Mr 50,000/(60,000/58,000) subunits in approximately a 3:1 ratio, while the cerebellar kinase contained the Mr 50,000/(60,000/58,000) subunits in approximately a 1:4 ratio. The forebrain kinase subunits were shown to be identical to the corresponding subunits of the cerebellar kinase by several criteria. The data are consistent with the existence in various brain regions of isozymic forms of Ca2+/calmodulin-dependent protein kinase II which differ in their relative subunit ratios.  相似文献   

10.
A calmodulin-dependent protein kinase has been purified from rat spleen. The enzyme showed a remarkably similar substrate specificity and kinetic parameters to those of rat brain calmodulin-dependent protein kinase II, and exhibited cross-reactivity to a monoclonal antibody against rat brain calmodulin-dependent protein kinase II, indicating that the enzyme might be a calmodulin-dependent protein kinase II isozyme. The sedimentation coefficient was 13.9S, the Stokes radius was 67 A, and the molecular weight was calculated to be 380,000. The purified enzyme gave five polypeptides bands, corresponding to molecular weights of 51,000, 50,000, 21,000, 20,000, and 18,000, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Incubation of the purified enzyme with Ca2+, calmodulin, and ATP under phosphorylating conditions induced the phosphorylation of all five polypeptides. When the logarithm of the velocity of the phosphorylation was plotted against the logarithm of the enzyme concentration (van't Hoff plot), slopes of 0.89, 0.94, and 1.1 were obtained for the phosphorylation of the 50/51-kDa doublet, 20/21-kDa doublet, and 18-kDa polypeptide, respectively. These results indicate that the phosphorylation of the five polypeptides is an intramolecular process, and further indicate that all five polypeptides are subunits of this enzyme. Of the five polypeptides, only the 50- and 51-kDa polypeptides bound to [125I]calmodulin, the other polypeptides not binding to it. A number of isozymic forms of calmodulin-dependent protein kinase II so far demonstrated in various tissues are known to be composed of subunits with molecular weights of 50,000 to 60,000 which can bind to calmodulin. Thus a new type of calmodulin-dependent protein kinase II was demonstrated in the present study.  相似文献   

11.
To search for the downstream target protein kinases of Ca (2+)/calmodulin-dependent protein kinase kinase (CaMKK), we performed affinity chromatography purification of a rat brain extract using a GST-fused CaMKKalpha catalytic domain (residues 126-434) as the affinity ligand. Proteomic analysis was then carried out to identify the CaMKK-interacting protein kinases. In addition to identifying the catalytic subunit of 5'-AMP-activated protein kinase, we identified SAD-B as interacting. A phosphorylation assay and mass spectrometry analysis revealed that SAD-B was phosphorylated in vitro by CaMKK at Thr (189) in the activation loop. Phosphorylation of Thr (189) by CaMKKalpha induced SAD-B kinase activity by over 60-fold. In transfected COS-7 cells, kinase activity and Thr (189) phosphorylation of overexpressed SAD-B were significantly enhanced by coexpression of constitutively active CaMKKalpha (residues 1-434) in a manner similar to that observed with coexpression of LKB1, STRAD, and MO25. Taken together, these results indicate that CaMKKalpha is capable of activating SAD-B through phosphorylation of Thr (189) both in vitro and in vivo and demonstrate for the first time that CaMKK may be an alternative activating kinase for SAD-B.  相似文献   

12.
13.
钙离子/钙调素依赖性蛋白激酶Ⅱ及其功能   总被引:1,自引:0,他引:1  
所有引起细胞内钙离子浓度升高的激素或神经递质都可通过不同的钙离子/钙调素依赖性蛋白激酶达到调节细胞生理功能的作用。在神经元活动、细胞分泌、平滑肌缩等 细胞活动中起重要作用。  相似文献   

14.
Rat liver L-type pyruvate kinase was phosphorylated in vitro by a Ca2+/calmodulin-dependent protein kinase purified from rabbit liver. The calmodulin (CaM)-dependent kinase catalyzed incorporation of up to 1.7 mol of 32P/mol of pyruvate kinase subunit; maximum phosphorylation was associated with a 3.0-fold increase in the K0.5 for P-enolpyruvate. This compares to incorporation of 0.7 to 1.0 mol of 32P/mol catalyzed by the cAMP-dependent protein kinase with a 2-fold increase in K0.5 for P-enolpyruvate. When [32P]pyruvate kinase, phosphorylated by the CaM-dependent protein kinase, was subsequently incubated with 5 mM ADP and cAMP-dependent protein kinase (kinase reversal conditions), 50-60% of the 32PO4 was removed from pyruvate kinase, but the K0.5 for P-enolpyruvate decreased only 20-30%. Identification of 32P-amino acids after partial acid hydrolysis showed that the CaM-dependent protein kinase phosphorylated both threonyl and seryl residues (ratio of 1:2, respectively) whereas the cAMP-dependent protein kinase phosphorylated only seryl groups. The two phosphorylation sites were present in the same 3-4-kDa CNBr fragment located near the amino terminus of the enzyme subunit. These results indicate that the CaM-dependent protein kinase catalyzed phosphorylation of L-type pyruvate kinase at two discrete sites. One site is apparently the same serine which is phosphorylated by the cAMP-dependent protein kinase. The second site is a unique threonine residue whose phosphorylation also inactivates pyruvate kinase by elevating the K0.5 for P-enolpyruvate. These results may account for the Ca2+-dependent phosphorylation of pyruvate kinase observed in isolated hepatocytes.  相似文献   

15.
The autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaM-KII) results in the generation of kinase activity that is largely Ca2+/CaM-independent. We report that continued Ca2+/CaM-independent autophosphorylation of CaM-KII results in the generation of distinct phosphopeptides as identified by high performance liquid chromatography and enzymatic properties that are different than those observed for Ca2+/CaM-dependent autophosphorylation. These Ca2+/CaM-independent properties include (a) increased catalytic activity, (b) higher substrate affinity for the phosphorylation of synapsin I, and (c) decreased CaM-binding to both CaM-KII subunits as analyzed by gel overlays. Our results indicate that the autophosphorylation of only one subunit per holoenzyme is required to generate the Ca2+/CaM-independent CaM-KII. We suggest a two-step process by which autophosphorylation regulates CaM-KII. Step I requires Ca2+/CaM and underlies initial kinase activation. Step II involves continued autophosphorylation of the Ca2+/CaM-independent kinase and results in increased affinity for its substrate synapsin I and decreased affinity for calmodulin. These results indicate a complex mechanism through which autophosphorylation of CaM-KII may regulate its activity in response to transient fluctuations in intracellular calcium.  相似文献   

16.
The AMP-activated protein kinase (AMPK) is an important regulator of cellular metabolism in response to metabolic stress and to other regulatory signals. AMPK activity is absolutely dependent upon phosphorylation of AMPKalphaThr-172 in its activation loop by one or more AMPK kinases (AMPKKs). The tumor suppressor kinase, LKB1, is a major AMPKK present in a variety of tissues and cells, but several lines of evidence point to the existence of other AMPKKs. We have employed three cell lines deficient in LKB1 to study AMPK regulation and phosphorylation, HeLa, A549, and murine embryo fibroblasts derived from LKB(-/-) mice. In HeLa and A549 cells, mannitol, 2-deoxyglucose, and ionomycin, but not 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), treatment activates AMPK by alphaThr-172 phosphorylation. These responses, as well as the downstream effects of AMPK on the phosphorylation of acetyl-CoA carboxylase, are largely inhibited by the Ca(2+)/ calmodulin-dependent protein kinase kinase (CaMKK) inhibitor, STO-609. AMPKK activity in HeLa cell lysates measured in vitro is totally inhibited by STO-609 with an IC50 comparable with that of the known CaMKK isoforms, CaMKKalpha and CaMKKbeta. Furthermore, 2-deoxyglucose- and ionomycin-stimulated AMPK activity, alphaThr-172 phosphorylation, and acetyl-CoA carboxylase phosphorylation are substantially reduced in HeLa cells transfected with small interfering RNAs specific for CaMKKalpha and CaMKKbeta. Lastly, the activation of AMPK in response to ionomycin and 2-deoxyglucose is not impaired in LKB1(-/-) murine embryo fibroblasts. These data indicate that the CaMKKs function in intact cells as AMPKKs, predicting wider roles for these kinases in regulating AMPK activity in vivo.  相似文献   

17.
A brain-specific multifunctional calmodulin-dependent protein kinase, calmodulin-dependent protein kinase IV, which exhibited characteristic properties quite different from those of calmodulin-dependent protein kinase II, was purified approximately 230-fold from rat cerebellum. The purified preparation gave two protein bands with molecular weights of 63,000 (alpha) and 66,000 (beta) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, both of which showed protein kinase activity as examined by the activity gel method. The molecular weight of the enzyme was estimated as about 67,000 from sedimentation coefficient (3.2 S) and Stokes radius (50 A), indicating a monomeric structure of the enzyme. The enzyme phosphorylated smooth muscle myosin light chain, synapsin I, microtubule-associated protein 2, tau protein, myelin basic protein, histone H1, and tyrosine hydroxylase in a Ca2+/calmodulin dependent manner, suggesting that the enzyme is a multifunctional calmodulin-dependent protein kinase capable of phosphorylating a large number of substrates. A synthetic peptide, Lys-Ser-Asp-Gly-Gly-Val-Lys-Lys-Arg-Lys-Ser-Ser-Ser-Ser, was found to be a specific substrate for this kinase and, using this peptide as substrate, the distribution of the enzyme activity in various rat tissues was examined. The activity was found in cerebral cortex, brain stem, and cerebellum, most abundantly in cerebellum, but other tissues tested, including liver, spleen, kidney, lung, heart, skeletal muscle, and adrenal gland showed very little activity.  相似文献   

18.
A 30-kDa fragment of Ca2+/calmodulin-dependent protein kinase II (30K-CaMKII) is a constitutively active protein Ser/Thr kinase devoid of autophosphorylation activity. We have produced a chimeric enzyme of 30K-CaMKII (designated CX40-30K-CaMKII), in which the N-terminal 40 amino acids of Xenopus Ca2+/calmodulin-dependent protein kinase I (CX40) were fused to the N-terminal end of 30K-CaMKII. Although CX40-30K-CaMKII exhibited essentially the same substrate specificity as 30K-CaMKII, it underwent significant autophosphorylation. Surprisingly, its autophosphorylation site was found to be Tyr-18 within the N-terminal CX40 region of the fusion protein, although it did not show any Tyr kinase activity toward exogenous substrates. Several lines of evidence suggested that the autophosphorylation occurred via an intramolecular mechanism. These data suggest that even typical Ser/Thr kinases such as 30K-CaMKII can phosphorylate Tyr residues under certain conditions. The possible mechanism of the Tyr residue autophosphorylation is discussed.  相似文献   

19.
We report the purification and characterization of an active catalytic fragment of Ca2+/calmodulin-dependent protein kinase II, derived from autophosphorylation and subsequent limited chymotryptic digestion of the purified rat forebrain soluble kinase. The purified fragment was completely Ca2+/calmodulin-independent, existed as a monomer, and phosphorylated synapsin I at the same sites as does the native form of Ca2+/calmodulin-dependent protein kinase II. Kinetic studies with the purified fragment revealed a more than 10-fold increase in Vmax and a 50% decrease in Km for synthetic peptide substrates, compared with native Ca2+/calmodulin-dependent protein kinase II. No 32P-labeled autophosphorylated residues were detected in the purified active fragment, indicating that the autophosphorylation sites were not contained within this fragment. Comparative studies of this active fragment (30 kDa) and its inactive counterpart (32-kDa fragment) revealed certain structural details of both fragments. Calmodulin-overlay study, immunoblot analysis, and direct amino acid sequencing suggest that both fragments contain the entire NH2-terminal catalytic domain and were generated by distinct cleavage within the regulatory domain. The putative cleavage sites for both fragments are discussed.  相似文献   

20.
We have focused on activation mechanisms of calcium/calmodulin-dependent protein kinase (CaM) kinase I in the hippocampal neurons and compared them with that of CaM kinase IV. Increased activation of CaM kinase I occurred by stimulation with glutamate and depolarization in cultured rat hippocampal neurons. Similar to CaM kinases II and IV, CaM kinase I was essentially activated by stimulation with the NMDA receptor. Although both CaM kinases I and IV seem to be activated by CaM kinase kinase, the activation of CaM kinase I was persistent during stimulation with glutamate in contrast to a transient activation of CaM kinase IV. In addition, CaM kinase I was activated in a lower concentration of glutamate than that of CaM kinase IV. Depolarization-induced activation of CaM kinase I was also evident in the cultured neurons and was largely blocked by nifedipine. In the experiment with 32P-labeled cells, phosphorylation of CaM kinase I was stimulated by glutamate treatment and depolarization. The glutamate- and depolarization-induced phosphorylation was inhibited by the NMDA receptor antagonist and nifedipine, respectively. These results suggest that, although CaM kinases I and IV are activated by the NMDA receptor and depolarization stimulation, these kinase activities are differently regulated in the hippocampal neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号